

Contents

Foreword

Preface

Acknowledgments

About the Author

Chapter 1: Why Cloud, Why Now?

Evolution of Cloud Computing

Enter the Cloud

Start-Up Case Study: Instagram, from Zero to a Billion
Overnight

Established Company Case Study: Netflix, Shifting from
On-Premises to the Cloud

Government Case Study: NOAA, E-mail, and Collaboration
in the Cloud

Not-for-Profit Case Study: Obama Campaign, Six-Month
Shelf-Life with One Big Peak

Summary

Chapter 2: Cloud Service Models

Infrastructure as a Service

2

Platform as a Service

Software as a Service

Deployment Models

Summary

Chapter 3: Cloud Computing Worst Practices

Avoiding Failure When Moving to the Cloud

Migrating Applications to the Cloud

Misguided Expectations

Misinformed about Cloud Security

Selecting a Favorite Vendor, Not an Appropriate Vendor

Outages and Out-of-Business Scenarios

Underestimating the Impacts of Organizational Change

Skills Shortage

Misunderstanding Customer Requirements

Unexpected Costs

Summary

Chapter 4: It Starts with Architecture

3

The Importance of Why, Who, What, Where, When, and How

Start with the Business Architecture

Identify the Problem Statement (Why)

Evaluate User Characteristics (Who)

Identify Business and Technical Requirements (What)

Visualize the Service Consumer Experience (Where)

Identify the Project Constraints (When and with What)

Understand Current State Constraints (How)

Summary

Chapter 5: Choosing the Right Cloud Service Model

Considerations When Choosing a Cloud Service Model

When to Use SaaS

When to Use PaaS

When to Use IaaS

Common Cloud Use Cases

Summary

Chapter 6: The Key to the Cloud

4

Why REST?

The Challenges of Migrating Legacy Systems to the Cloud

Summary

Chapter 7: Auditing in the Cloud

Data and Cloud Security

Auditing Cloud Applications

Regulations in the Cloud

Audit Design Strategies

Summary

Chapter 8: Data Considerations in the Cloud

Data Characteristics

Multitenant or Single Tenant

Choosing Data Store Types

Summary

Chapter 9: Security Design in the Cloud

The Truth about Data in the Cloud

How Much Security Is Required

5

Responsibilities for Each Cloud Service Model

Security Strategies

Areas of Focus

Summary

Chapter 10: Creating a Centralized Logging Strategy

Log File Uses

Logging Requirements

Summary

Chapter 11: SLA Management

Factors That Impact SLAs

Defining SLAs

Managing Vendor SLAs

Summary

Chapter 12: Monitoring Strategies

Proactive vs. Reactive Monitoring

What Needs to Be Monitored?

Monitoring Strategies by Category

6

Monitoring by Cloud Service Level

Summary

Chapter 13: Disaster Recovery Planning

What Is the Cost of Downtime?

Disaster Recovery Strategies for IaaS

Recovering from a Disaster in the Primary Data Center

Disaster Recovery Strategies for PaaS

Disaster Recovery Strategies for SaaS

Disaster Recovery Hybrid Clouds

Summary

Chapter 14: Leveraging a DevOps Culture to Deliver
Software Faster and More Reliably

Developing the DevOps Mind-Set

Automate Infrastructure

Automate Deployments

Design Feature Flags

Measure, Monitor, and Experiment

Continuous Integration and Continuous Delivery

7

Summary

Chapter 15: Assessing the Organizational Impact of the Cloud
Model

Enterprise Model vs. Elastic Cloud Model

IT Impact

Business Impacts

Organization Change Planning

Change in the Real World

Summary

Chapter 16: Final Thoughts

The Cloud Is Evolving Rapidly

Cloud Culture

New Business Models

PaaS Is the Game Changer

Summary

Index

8

Founded in 1807, John Wiley & Sons is the oldest
independent publishing company in the United States. With
offices in North America, Europe, Asia, and Australia, Wiley
is globally committed to developing and marketing print and
electronic products and services for our customers’
professional and personal knowledge and understanding.

The Wiley CIO series provides information, tools, and
insights to IT executives and managers. The products in this
series cover a wide range of topics that supply strategic and
implementation guidance on the latest technology trends,
leadership, and emerging best practices.

Titles in the Wiley CIO series include:

The Agile Architecture Revolution: How Cloud Computing,
REST-Based SOA, and Mobile Computing Are Changing
Enterprise IT by Jason Bloomberg
Big Data, Big Analytics: Emerging Business Intelligence and
Analytic Trends for Today’s Businesses by Michael Minelli,
Michele Chambers, and Ambiga Dhiraj
The Chief Information Officer’s Body of Knowledge: People,
Process, and Technology by Dean Lane
CIO Best Practices: Enabling Strategic Value with
Information Technology (Second Edition) by Joe Stenzel,
Randy Betancourt, Gary Cokins, Alyssa Farrell, Bill
Flemming, Michael H. Hugos, Jonathan Hujsak, and Karl
Schubert
The CIO Playbook: Strategies and Best Practices for IT
Leaders to Deliver Value by Nicholas R. Colisto
Enterprise Performance Management Done Right: An
Operating System for Your Organization by Ron Dimon

9

Executive’s Guide to Virtual Worlds: How Avatars Are
Transforming Your Business and Your Brand by Lonnie
Benson
IT Leadership Manual: Roadmap to Becoming a Trusted
Business Partner by Alan R. Guibord
Managing Electronic Records: Methods, Best Practices, and
Technologies by Robert F. Smallwood
On Top of the Cloud: How CIOs Leverage New Technologies
to Drive Change and Build Value Across the Enterprise by
Hunter Muller
Straight to the Top: CIO Leadership in a Mobile, Social, and
Cloud-based World (Second Edition) by Gregory S. Smith
Strategic IT: Best Practices for Managers and Executives by
Arthur M. Langer and Lyle Yorks
Transforming IT Culture: How to Use Social Intelligence,
Human Factors, and Collaboration to Create an IT
Department That Outperforms by Frank Wander
Unleashing the Power of IT: Bringing People, Business, and
Technology Together by Dan Roberts
The U.S. Technology Skills Gap: What Every Technology
Executive Must Know to Save America’s Future by Gary J.
Beach
Architecting the Cloud: Design Decisions for Cloud
Computing Service Models (SaaS, PaaS, and IaaS) by
Michael Kavis

10

11

Cover Image: © iStockphoto/Kalawin

Cover Design: Wiley

Copyright © 2014 by Michael Kavis. All rights reserved.

Published by John Wiley & Sons, Inc., Hoboken, New Jersey.

Published simultaneously in Canada.

No part of this publication may be reproduced, stored in a
retrieval system, or transmitted in any form or by any means,
electronic, mechanical, photocopying, recording, scanning, or
otherwise, except as permitted under Section 107 or 108 of
the 1976 United States Copyright Act, without either the prior
written permission of the Publisher, or authorization through
payment of the appropriate per-copy fee to the Copyright
Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA
01923, (978) 750-8400, fax (978) 646-8600, or on the Web at
www.copyright.com. Requests to the Publisher for permission
should be addressed to the Permissions Department, John
Wiley & Sons, Inc., 111 River Street, Hoboken, NJ 07030,
(201) 748-6011, fax (201) 748-6008, or online at
http://www.wiley.com/go/permissions.

Limit of Liability/Disclaimer of Warranty: While the
publisher and author have used their best efforts in preparing
this book, they make no representations or warranties with
respect to the accuracy or completeness of the contents of this
book and specifically disclaim any implied warranties of
merchantability or fitness for a particular purpose. No
warranty may be created or extended by sales representatives

12

or written sales materials. The advice and strategies contained
herein may not be suitable for your situation. You should
consult with a professional where appropriate. Neither the
publisher nor author shall be liable for any loss of profit or
any other commercial damages, including but not limited to
special, incidental, consequential, or other damages.

For general information on our other products and services or
for technical support, please contact our Customer Care
Department within the United States at (800) 762-2974,
outside the United States at (317) 572-3993 or fax (317)
572-4002.

Wiley publishes in a variety of print and electronic formats
and by print-on-demand. Some material included with
standard print versions of this book may not be included in
e-books or in print-on-demand. If this book refers to media
such as a CD or DVD that is not included in the version you
purchased, you may download this material at
http://booksupport.wiley.com. For more information about
Wiley products, visit www.wiley.com.

ISBN 978-1-118-61761-8 (cloth)

ISBN 978-1-118-82627-0 (epdf)

ISBN 978-1-118-82646-1 (epub)

ISBN 978-1-118-69177-9 (o-book)

13

I dedicate this book to my parents, John and Deme, and

my brother, Bill, whose work ethic and drive to be the best

in their fields serve as inspiration for me to excel and fully

embrace my field of computer science.

14

FOREWORD

I first met Mike Kavis when he brought our Licensed
ZapThink Architect SOA course to his company in Florida
several years ago. As the vice president of architecture for
this firm, Mike hoped to wrangle his group of developers to
help them think like architects. And while I couldn’t
transform developers into architects in four days, the thrust of
the course was to help people think like architects.

The book you have in your hands now has the same mission.
Cloud computing as an approach to IT infrastructure is still
emerging, and thus the technical details are still in flux—but
the architectural principles of the cloud are now falling into
place. But only by thinking like an architect will you be able
to take advantage of the full power of the cloud.

Architects are in a unique position in the IT shop, because
they have one foot in the business and the other squarely
ensconced in the technology. They must understand the nuts
and bolts of what works and what doesn’t without falling
victim to the techie tunnel vision that inflicts so many IT
people. But they must also live and breathe the business: its
strategy, its goals, and most importantly, its problems.

Architecting the Cloud connects these dots. Mike Kavis has
intentionally avoided product- or vendor-specific details,
focusing instead on the challenges that architects, as well as
stakeholders in the architecture, should address—in other
words, connecting the business problem with the appropriate
solution. A truism to be sure, but easier said than done in the
cloud.

15

The reason that solving business challenges in the cloud is so
difficult is because the cloud is not just one thing. It is many
diverse things: SaaS, PaaS, and IaaS service models, public,
private, and hybrid deployment models, not to mention
diverse value propositions. Some organizations seek to save
money with the cloud while others want to shift capital to
operational expense. On top of these benefits is elasticity:
dealing better with unpredictable demand for IT resources.

Never before has architecture mattered so much. Building
working solutions in the cloud that actually address the
business need depends upon it. With his hands-on experience
architecting such cloud solutions, Mike Kavis has the
experience and insight to lead the way.

—Jason Bloomberg

President, ZapThink

16

PREFACE

If you don’t know where you are going, any road will take
you there.

— Lewis Carroll, Alice in Wonderland

In the summer of 2008, after three decades of building
software in corporate data centers, I walked away from
corporate America to take a stab at building a technology
company from the ground up based on a clever concept of the
start-up company’s founder. After years of building software
within the constraints of existing data centers and the long
procurement cycles required to make new computing
resources available to build on, I saw leveraging cloud
computing as an opportunity to achieve far greater agility at a
pay-as-you-go utility pricing model. When I started my
journey I tweeted to my social network and asked if anyone
knew of any real-life examples of real-time transaction
processing occurring in the public cloud. My tweet generated
a lot of laughs and snarky comments; after all, who would
have thought of processing information from a
brick-and-mortar retail point-of-sale system over the Internet
with a transaction engine in the public cloud in 2008? One
responder laughed and said, “Let me know when you find an
example.” It was clear to me that we were pioneers, and we
would have to learn things the way pioneers learned: by trial
and error. Now, five years later, I want to share my lessons
learned with readers so they can rely more on the experiences
of others rather than brute force trial and error, like pioneers.

17

There are many books that define what cloud computing is
and how the cloud is the biggest game changer since the rise
of the Internet and the birth of the personal computer. The
books in the marketplace today typically target management,
beginners, or developers. This book is targeting chief
technology officers, enterprise architects, product managers,
and key technology decision makers.

Several books that target cloud architects get very specific
about how to build software in the cloud and often focus on
leading vendors. The content within this book is vendor
agnostic since all the concepts discussed can be applied to any
vendor or proprietary solution. I believe that one of the most
critical technology decisions for succeeding with cloud
computing is selecting the right cloud service model(s), which
should be based on a combination of business, technology,
and organizational requirements. Unfortunately, there is a
notable absence of information in the marketplace to guide
decision makers through this critical decision point. This
book is focused on filling that information gap by providing
decision makers with the pros and cons of each service model
from the viewpoint of a consumer of cloud services.

This book is a must-read for any decision maker starting the
vendor selection and development process for their cloud
computing initiative. Starting a cloud initiative with a blank
sheet of paper is a daunting task. This book provides the
reader with an arsenal of design decisions to contemplate and
highlights critical areas of concern that all cloud architectures
must contend with.

18

Overview of the Contents
Within each chapter I’ll share a story that is relevant to the
topic of discussion. These stories are either a personal
experience that I have been involved in during my career or
one of a peer or colleague. The names of companies,
individuals, and products will be masked by fictitious names.
Storytelling helps readers relate better to technical topics
because we all have similar experiences throughout our
careers. As with any other shift in technology, there is a lot of
hype and many myths and misperceptions about cloud
computing that lead to resistance or difficulties for some
organizations in adopting the cloud. I have observed the same
behavior numerous times in my career with the adoption of
the Internet, service-oriented architecture (SOA), agile
methodologies, and others. I have been fortunate enough to
have multiple opportunities to be a pioneer for several of
these technology shifts. I will use some stories from the past
to show the parallels between the resistance to cloud
computing and the resistance to the predecessor technologies.

I have always found that discussing technology in terms of
familiar business scenarios helps readers to visualize concepts
and makes it easier to translate those visualizations to the
reader’s real-life scenarios. I have created a fictitious online
auction company called Acme eAuctions (AEA) and will use
AEA to describe many relevant business scenarios to help
explain key points throughout this book. I will be discussing
many facets of AEA’s business, not just its online auction
website, so those readers not in the web business need not be

19

alarmed. There will be plenty of scenarios that address
relevant business scenarios for all readers.

As You Begin
Architecting the Cloud was written to fill a void that existed
when I started building my first cloud application back in
2008. Each chapter provides insights gained through my
experiences, both things I got right and things I got wrong.
My hope is that by sharing these experiences and providing a
list of design considerations in a variety of areas of concern,
my readers can make more precise design decisions and will
not have to rely as much on trial and error as I did when I first
started. Cloud computing can offer tremendous benefits such
as increased speed to market, lower total cost of ownership,
and greater flexibility if designed correctly, but there are no
silver bullets. To achieve these benefits, a pragmatic approach
is required. This book aims to arm the reader with a long list
of design considerations to help the reader achieve the goals
that the cloud promises.

20

ACKNOWLEDGMENTS

First and foremost, I would like to thank my wife, Eleni, and
my kids, Yanni and Athena. They have supported me
throughout my career and have made way too many sacrifices
over the last decade as my journey took me from four years of
graduate studies at night, to five years of being a road warrior,
and to the six months when I was holed up in my office
writing this book.

I could not have written this book without the guidance,
constructive criticism, and encouragement of my friend,
mentor, and fellow RESTafarian, Jason Bloomberg, president
of ZapThink. Thanks for reviewing my chapters and helping
me out at times when I was stuck.

A special thanks goes out to two warriors whom I have taken
to battle with me for well over 10 years and who were a major
reason we won the AWS Start-Up Challenge in 2010, Greg
Rapp and Jack Hickman. Without talented, dedicated, and
loyal technicians like these two guys, I would never have
gained the experience required to write about the cloud.
Nobody was crazy enough to take point-of-sale (POS)
transactions out of grocery stores and into the public cloud
back in 2008. We were met with resistance from retailers,
POS vendors, investors, peers, and just about everyone. Greg
and Jack never questioned the strategy and accepted the
challenge. Together we changed the retail industry forever,
and now cloud-based POS transactions are the future. Thanks,
Greg and Jack!

21

And finally, thanks to my parents for raising me to be driven
to be the best I can be. Mom and Dad, just look at the pictures
because you won’t understand a word of this book.

22

ABOUT THE AUTHOR

Mike Kavis is a vice president and principal architect at
Cloud Technology Partners and an industry analyst. He has
served in technical roles such as chief technology officer,
chief architect, and vice president positions with over 25
years of experience building enterprise solutions in health
care, retail, manufacturing, and loyalty marketing industries.

In 2010, as chief technology officer for start-up M-Dot
Network, his company won the prestigious Amazon AWS
Global Start-Up Challenge. M-Dot built a high-speed
micropayments network that processed digital incentives by
integrating brick-and-mortar point-of-sale systems into a
digital incentive PaaS built entirely on Amazon’s AWS public
cloud. M-Dot Network was acquired in 2011. In his spare
time he works with several start-ups in an advisory role
focusing on architecture and cloud computing. When he is not
staring at his computer he enjoys traveling to MetLife
Stadium in New Jersey to watch his beloved New York
Giants.

23

Chapter 1

Why Cloud, Why Now?
There was a time when every household, town, farm, or
village had its own water well. Today, shared public utilities
give us access to clean water by simply turning on the tap;
cloud computing works in a similar fashion. Just like water
from the tap in your kitchen, cloud computing services can be
turned on or off quickly as needed. Like at the water
company, there is a team of dedicated professionals making
sure the service provided is safe, secure, and available on a
24/7 basis. When the tap isn’t on, not only are you saving
water, but you aren’t paying for resources you don’t currently
need.

— Vivek Kundra, former federal CIO, U.S. government

In 2009, I was invited to the IBM Impact conference in Las
Vegas as a guest blogger and analyst. Cloud computing was a
vastly misunderstood term at that time, and there were very
few enterprises leveraging any cloud services other than a few
of the mature SaaS solutions like Salesforce.com and
Concur’s expense management software. I witnessed some
very intelligent senior IT people from various companies
scoffing at the term cloud computing. I can still hear the lines:
“We were doing this on the mainframe in the ’60s” and
“There is nothing new here, this is just a fad.” At that time,
my team of one developer was testing a prototype that was

24

executing hundreds of thousands concurrent point-of-sale
(POS) transactions to the cloud and back in subsecond
response time on a virtual cloud server, costing us about half
a dollar an hour charged against my CEO’s credit card. I
started to think about how much it would cost to implement
the infrastructure, licenses, and professional services to
perform a proof-of-concept on-premises. I also thought about
how many months it would take to go through a vendor
evaluation, the procurement process, and all of the steps
required to make a capital expenditure that would have been
required to buy servers from a large vendor like IBM. At the
end of several months, I would finally have all the hardware,
software, licenses, and professional services that my
developer would need to test his proof-of-concept. My
start-up would have been out of cash by then, and all I would
have to show for it would have been a few lunches paid for
and a nice golf shirt with the vendor’s logo on it.

Instead of doing things as if we were a large company with all
the time and money in the world, my team embraced the
cloud and saw it as a competitive advantage. Our competition
was two to three years ahead of us, but we felt we could
provide superior products and services at a price point that
could not be matched by companies that were purchasing and
managing infrastructure and data centers. My developer was
able to provision many different-size servers and test multiple
configurations until he finally found the sweet spot. Our cloud
services provider, Amazon Web Services (AWS), had made
infrastructure management easy by abstracting out all of the
complexities into a few simple application programming
interfaces (APIs). We could build and deploy numerous
server configurations in minutes and de-provision them when
we were done. That is a drastic change from days past. Before

25

cloud computing, the thought of asking one’s boss to
purchase three different types and sizes of servers in order to
run a series of tests and theories on them to determine which
one is actually the right one was not a feasible or
career-enhancing proposition. Buying many different
hardware configurations, tossing out the configurations that
did not perform optimally, and then going back to
procurement to buy more of the right configuration is an
insane approach when dealing with physical machines. In the
cloud, this is a best practice. Cloud computing resources
follow a pay-as-you-go pricing model just like electricity and
water. It is easy to test multiple configurations in a
prototyping environment with very little investment.

Going back to my example, we used a simple management
console to launch numerous virtual computing resources that
were ready to run in five minutes. We would run our tests for
two hours and then discard the virtual computing resources.
Our total cost was 50 cents an hour or $1 worth of
infrastructure to run this prototype. Then we would move on
to the next server configuration and try another series of tests.
We would do this three times during the day and rack up $3
in infrastructure costs. Here is a comparison of prototyping in
the cloud versus prototyping in the same manner on-premises:

• Scenario A (on-premises). Buy three different severs
at roughly $3,000 to $5,000 each, plus software,
shipping, and installation.

• Elapsed time to procure and implement likely
to range between one and three months.

• Outcome: Decide on which server to keep,
buy more, get rid of the other two.

26

• Scenario B (cloud model). Developer creates three
different virtual computing resources within minutes
at $0.50/hour, using one at a time for two hours each
(total $3.00).

• Complete testing and make a decision in one
day.

• Outcome: Complete the entire scenario in
one day of work for just $3.00 plus one
person’s salary. No wasted assets.

That is just one real-life example that made me a believer in
cloud computing. As we continued our journey as an early
stage start-up I was continually amazed at how quickly we
could get work done at such a low cost. We owned no
hardware and leveraged open source software. Since we did
not have to manage data centers and physical infrastructure,
we were able to focus on building product to generate revenue
so that our start-up could live to see another day.

Evolution of Cloud
Computing
My first job out of college in 1988 was a COBOL
programmer working at a steel plant in the South. We were
migrating from an old Burroughs mainframe computer to a
new IBM 3090 mainframe, which, to put things in perspective
of the level of coolness in today’s terms, is the equivalent of
moving from a feature phone to a smart phone. The code of
the first program I worked on was written the year I was born.
It had been ported from one mainframe system to the next and
was 23 years old at the time. When that code was written, a

27

lot of engineering went into breaking up messages into very
small chunks of memory because of mainframe memory
limitations in the 1960s. Here we were in 1988 with this
then-massive IBM mainframe with what seemed like endless
amounts of memory and using code that was working really
hard to break things down into 8K chunks. I thought this was
absurd, but as a 23-year-old rookie, I shook my head and
ported that code to the new system. Little did I know that
some 25 years later, masses of people would be taking that
same approach as they began porting their legacy applications
to the cloud without even considering that the new target
environment is drastically different and more powerful than
the environment the legacy code is running on. We will
discuss stories like this in Chapter 3 (“Cloud Computing
Worst Practices”).

Cloud computing is the result of many years of evolution
dating back to the first computers. It is the natural progression
from the centralized mainframe era, to the distributed
client-server era enabled by the birth of personal computers,
to the Internet era where the enterprise was able to connect to
the rest of the world through a network of computers that
spanned the globe. Back in the mainframe days, systems were
centrally controlled and managed. The mainframe
administrators were the powerful gatekeepers of all data and
all systems. They were also often the biggest bottleneck
because nothing could get done without going through them.
When the PC was born, IT professionals were empowered
and were able to distribute workloads across many work
nodes without having to go through the once-powerful
mainframe gatekeepers. This was both advantageous and
dangerous. It was advantageous from the standpoint that
systems were built and deployed faster, cheaper, and with

28

richer features. It was dangerous from the standpoint that in
return for the gains in agility and flexibility, we witnessed a
huge decrease in the effectiveness of governance and security.

Another way to say it is we gave up manageability and
standardization for speed to market. The distributed nature of
PCs in a client-server architecture created a “Wild West”
effect, where applications could be deployed rapidly without
the assurance of the proper security and controls in place. The
net result was applications became more nonstandard and
filled with gaping security holes that gave birth to the rise of
security breaches, identity theft, and cyber-threats at levels
never witnessed before.

In addition, management of the enterprise became a very
complex and expensive challenge. In fact, one could argue
that the birth of the client-server era was the defining moment
where business and IT alignment took a turn for the worst. In
the mainframe days, the mainframe and IT’s sole purpose was
to build systems for the business to enable business strategies.
We built financial systems, payroll systems, and systems that
drove the business’s core competencies and automated
operational processes. The PC-enabled client-server era
allowed IT to create systems faster and cheaper but
introduced new challenges like integration, interoperability,
widespread patching, and much more. These complex issues
led to a lot of IT-centric tasks that shifted large numbers of IT
resources away from business enablement to IT maintenance.
In addition, this era gave birth to a whole new breed of
infrastructure, security, and operational professionals who
spend the majority of their time working within IT silos
dealing with issues and projects that do not drive revenue or
increase profitability. In fact, much of this work increases

29

opportunity costs for the business by consuming resources
that could be directed toward increasing revenue or reducing
waste.

Then came the Internet, which extended the enterprise to the
outside world. Now companies could integrate their systems
with their suppliers. Customers could go online and purchase
goods and services in self-service mode 24 hours a day, 365
days a year. Software vendors could now deliver services as
hosted solutions, eliminating the need to procure and manage
hardware on-site. The Internet created a global revolution
where any company or individual with an Internet connection
could now do business from anywhere in the world, any hour
of the day.

Once again, the level of complexity of systems increased
dramatically. The level of control and governance decreased
significantly. Applications became even more insecure,
creating opportunities for people and organizations with bad
intentions to attack systems and steal and sell data, which
created a whole new industry of products and services to
secure systems. When the Internet was being touted as a huge
technology innovation, I remember the pundits fighting the
movement while waving the security flag. This is the exact
same thing we are witnessing today with the adoption of
cloud computing. The same people and others like them are
riding the security bandwagon in resistance to the next
biggest thing in technology.

What history shows us time and time again is that every new
technology innovation is met with resistance. Early adopters
and risk takers embrace the new technologies and become the
guinea pigs for the enterprises that typically prefer to wait

30

until the technology becomes mature. The trailblazers take
advantage of these new technologies and create tremendous
business value. As success stories start becoming more and
more frequent, demand goes up. As demand goes up, issues
like standards and security become prominent topics and
major hurdles for mass adoption. Standards start to emerge,
best practices are published, and vendor and open-source
products start becoming widely available to fill in the gaps.
Cloud computing, like the Internet several years before, is at
that tipping point where many organizations are moving from
the why question to the how question.

In Figure 1.1, the diagram uses the Gartner Hype Cycle
terminology to describe how technology matures over time.

Figure 1.1 Cloud Maturity

31

As time progresses and more companies adopt cloud
technology, the expectations move from hype and confusion
in the early years and migrate toward broad acceptance as
standards, best practices, and success stories emerge.
Currently we are somewhere between the peak of inflated
expectations and the disillusionment. As of this writing in
early 2013, cloud computing is widely accepted by start-ups
and small and medium businesses (SMBs), but large
enterprises are late in adopting cloud computing. This is due
to the complexities that come with years of legacy
architectures, existing infrastructure and data centers, and
organizational challenges.

32

The mind-set of large enterprises is changing rapidly in 2013
as many cloud service providers are delivering products and
services that cater to enterprise-class clouds, where previously
only commodity-class clouds were available. Commodity
clouds were designed to commoditize infrastructure and offer
it at low cost with the capabilities to achieve high scale and
self-service capabilities. Enterprise-class clouds were
designed to meet or exceed the security and service level
agreements (SLAs) of the on-premises infrastructure they
replace. Enterprise clouds are more expensive and complex
than commodity clouds, but commodity clouds often do not
meet the security, regulatory, and SLA requirements required
within the enterprise.

Figure 1.2 shows how security maturity often lags behind in
the adoption of new technologies, which delays mass
adoption by large enterprises. The early pioneers and risk
takers blaze the trail and eventually the best practices and
security vendor solutions emerge from those early lessons
learned. It appears that 2013 will be the year where
enterprises start to embrace cloud computing in large
numbers, as we are seeing huge turnouts to cloud computing
conferences and a large increase in budget dollars allocated
for cloud computing.

Figure 1.2 Cloud Security Maturity

33

Enter the Cloud
Cloud computing combines the best of the mainframe era
with the best of the PC-enabled client-server era along with
the Internet era. Those old-timers from the conference I
mentioned earlier were right. “We have been doing this for
years,” as they said. What they missed, though, is that now
we can do it at scale, using a pay-as-you-go billing model, at
speeds never accomplished before, and all without ever
buying any hardware or building any data centers. If managed
correctly, cloud computing can give us back a lot of that
central control and governance that we had from the
mainframe days. At the same time, the cloud makes available
to us a massive amount of distributed computing resources,

34

gives us broad network access over the Internet, and bottles it
up so we can pay for it as a utility like electricity or water.
We pay for what we use and we turn it off when we don’t
need it.

It is true that many of the concepts of cloud computing have
been around for years. What is new is that many of those
lessons learned and techniques in computer science that have
been perfected over the past few decades are now able to be
simplified and automated and made available as highly
abstracted on-demand services and offered at price points that
are hard for the traditional on-premises or commercial
software industry to compete against. The days of requiring
customers to purchase and manage hardware and software
licenses are long gone. Most customers now expect their
needs to be met over the web either as an on-demand software
solution (Software as a Service), a platform for quickly
developing scalable solutions without all of the infrastructure
costs (Platform as a Service), or a virtual data center for
building scalable solutions at a lower cost (Infrastructure as a
Service). These three cloud service models will be discussed
in detail in Chapter 2.

When people tell me that the cloud is nothing new and that
we have been doing cloud for years and years, I give them
this analogy. “The iPhone is nothing new. We have been
doing phones for years and years.” My point here is, yes, we
have been using telephones for decades and decades, but the
iPhone is radically different from the rotary phone that I used
as a kid, and it has made a major impact on businesses and on
our lives. The cloud is to computing as the iPhone is to
telephones.

35

Still not convinced? Here are some case studies of companies
leveraging cloud computing to create business value. Each
case study has a very compelling story of how great teams
leveraged the cloud to get to market fast, scaled to incredible
levels, and did it without buying hardware.

Start-Up Case Study:
Instagram, from Zero to a
Billion Overnight
In October 2010, a photo-sharing application called Instagram
was launched, and 25,000 people registered on that first day.
Three months later, Instagram had 1 million users, and shortly
after hit 10 million. At that time, the company only offered an
iOS version of its mobile application, so it was only capturing
iPhone users. A year and a half later, Instagram had close to
30 million users. When it finally launched the Android
version, it acquired 1 million users on the first day. In April
2012, less than two years after it launched, Instagram was
bought by Facebook for an estimated $1 billion. In September
2012, just shy of two years from its initial launch, Instagram
hit 100 million users.

Wow! Three guys on a bootstrap budget were able to build a
solution entirely on a public cloud. Imagine trying to scale
that fast in a brick-and-mortar data center. In a physical data
center, they would never be able to buy hardware fast enough
to keep up with the skyrocketing growth. In fact, one could
argue that if it were not for the cloud and the on-demand and

36

auto-scaling capabilities, they may never have been able to
achieve this success because they would have likely
experienced outages as they ran out of capacity.

This story highlights the power of on-demand compute
resources. These talented engineers were able to build an
amazing, highly scalable architecture in a short amount of
time. They did not have to manage data centers or networks
or procure, install, and manage hardware. Instead they
focused on application architecture and the user experience,
two things they excelled at. For start-ups, the cloud is a
no-brainer. For companies with an existing data center, it is
more of a challenge, which leads us to our next case study.

Established Company Case
Study: Netflix, Shifting from
On-Premises to the Cloud
Netflix is an industry leader in streaming video content over
the Internet. In 2009, 100 percent of all customer traffic was
run through Netflix’s own data center. By the end of 2010,
much of that same traffic was running on AWS, Amazon’s
public cloud solution. Netflix’s goal for 2013 is to have at
least 95 percent of all services, including operational services,
not just customer traffic, running in the cloud. On its
technology blog the company stated its reasons for shifting to
the cloud. The enormous amount of incoming traffic required
it to rearchitect its solution. It decided that it would rather
focus its engineering efforts on building and improving the

37

business applications (Netflix’s core competencies) and let
Amazon focus on the infrastructure (AWS’s core
competency). Netflix also spoke about how challenging it was
to predict traffic. Companies building on-premises solutions
must buy excess capacity to handle spikes. That becomes a
great challenge when traffic is not predictable. Netflix felt it
was advantageous to leverage the public cloud’s on-demand
resources and focus on building in auto-scaling capabilities to
ensure that it could consume compute resources at the same
rate of its incoming traffic. According to the Netflix
technology blog on December 14, 2010:

Cloud environments are ideal for horizontally scaling
architectures. We don’t have to guess months ahead what our
hardware, storage, and networking needs are going to be. We
can programmatically access more of these resources from
shared pools within AWS almost instantly.

Netflix also sees leveraging cloud computing as a competitive
advantage. The company is able to scale at amazing levels
a while controlling costs and reducing the risks of downtime.
It also feels that the cloud is the wave of the future and
leveraging the cloud will attract the best talent:

It will help foster a competitive environment for cloud service
providers, which will help keep innovation high and prices
dropping. We chose to be pioneers in this transition so we
could leverage our investment as we grow, rather than to
double down on a model we expect will decline in the
industry. We think this will help differentiate Netflix as a
place to work, and it will help us scale our business.

38

Now we have discussed a start-up success story and an
established company success story in the cloud. Let’s take a
look at how the government is leveraging the cloud.

Government Case Study:
NOAA, E-mail, and
Collaboration in the Cloud
The National Oceanic and Atmospheric Administration
(NOAA) moved to a cloud-based e-mail solution—Google’s
Gmail—at the beginning of 2012. NOAA is a federal agency
with over 25,000 employees whose mission is to understand
and predict change in climate, weather, oceans, and coasts.
NOAA has employees working in all conditions such as in the
air, on land, and on sea. The employees rely heavily on
Internet-connected devices and collaboration with team
members and other agencies. To enable efficient e-mail and
collaboration capabilities, NOAA chose a cloud-based
solution that includes e-mail, instant messaging,
videoconferencing, shared calendars, and shared documents.
Migrating to these cloud services cut NOAA’s costs in half
and removed the burden of managing software and hardware
updates in a highly distributed and device-heavy environment.
NOAA’s management staff claims that the cloud-based
e-mail and collaboration tools are faster and easier to deploy
than the on-premises solutions and the services themselves
were more modern. Moving its e-mail and collaboration
services to the cloud created great business value by

39

delivering a better overall service at half the price with less
effort.

We have discussed success stories in the private sector and
the public sector. The next case study is an amazing story
about a presidential campaign that built a billion-dollar
e-commerce site overnight.

Not-for-Profit Case Study:
Obama Campaign,
Six-Month Shelf-Life with
One Big Peak
Very rarely does one see the type of requirements that the
Obama campaign’s technical team was faced with. They very
quickly had to build a suite of applications including an
e-commerce fund-raising platform capable of managing over
$1 billion that would run for only six months, have an
enormous spike on the last few days, and then back
everything up and go away. The team relied heavily on cloud
computing solutions and used services from every service
model (SaaS, PaaS, and IaaS). The team cited reasons like
lower costs, speed to market, on-demand resources, and
scalability as some of the reasons for its decisions. Its
phone-calling application scaled to 7,000 concurrent users as
it peaked on Election Day. The team spent roughly $1.5
million on web hosting and web services, but the amazing
statistic is that over $1 million of that was for an on-premises

40

hosting company that managed some of the social media and
digital advertising while the rest of the 200-plus applications
ran on less than $500,000 of cloud infrastructure and services.

Summary
Cloud computing has evolved from many decades of
computing. Cloud computing is the biggest technological shift
since the birth of the personal computer and the broad
adoption of the Internet. Cloud computing is still in its
infancy. Early adopters were mainly start-ups, small
businesses, and risk-taking enterprises. As 2012 closed out
and the year 2013 began, cloud computing has become widely
accepted and enterprise budgets for cloud computing
initiatives are growing at enormous rates. As with anything
new and immature, cloud computing is still lacking in
standards and best practices. The cloud vendors have
occasional outages but their overall performance has
improved over the years as their products and services
mature. Incredible success stories like Netflix and Instagram
are becoming more common each year. Enterprises are
shifting dollars away from commercial software licenses and
hardware investments in favor of a variety of cloud services
across all three service models. The secret to success for
enterprises will be picking the right cloud solutions to solve
the right business problems. Understanding the three cloud
service models—SaaS, PaaS, and IaaS—is crucial for
enterprises to make the right investments in the cloud.

References

41

Barr, J. (2012, November 16). “AWS in Action: Behind the
Scenes of a Presidential Campaign.” Retrieved from
http://aws.typepad.com/aws/2012/11/
aws-in-action-behind-the-scenes-of-a-presidential-campaign.html.

Barton, M. (2012, April 11). “Cloud Lessons? Instagram
Keep-It-Simple Mashup Approach.” Retrieved from
http://www.wired.com/insights/2012/04/instagram/.

Ciancutti, J. (2010, December 14). “Four Reasons We Choose
Amazon’s Cloud as Our Cloud Computing Platform.”
Retrieved from http://techblog.netflix.com/2010/12/
four-reasons-we-choose-amazons-cloud-as.html.

Cutler, K. (2012, April 9). “From 0 to $1B in Two Years:
Instagram’s Rose-Tinted Ride to Glory.” Retrieved from
http://techcrunch.com/2012/04/09/
instagram-story-facebook-acquisition/.

Fingas, J. (2012, November 8). “Sandvine: Netflix up to 29
Percent of North American Internet Traffic, YouTube Is Fast
on the Rise.” Retrieved from http://www.engadget.com/2012/
11/08/
sandvine-netflix-29-percent-of-north-american-internet-traffic/.

Gallagher, S. (2012, November 20). “How Team Obama’s
Tech Efficiency Left Romney IT in Dust.” Retrieved from
http://arstechnica.com/information-technology/2012/11/
how-team-obamas-tech-efficiency-left-romney-it-in-dust/.

Hoover, J. (2011, June 9). “From Ocean to Cloud: NOAA
Goes Google Apps.” Retrieved from

42

http://www.informationweek.com/government/cloud-saas/
from-ocean-to-cloud-noaa-goes-google-app/230500174.

Rush, K. (2012, November 12). “Meet the Obama
Campaign’s $250 Million Fundraising Platform.” Retrieved
from http://kylerush.net/blog/
meet-the-obama-campaigns-250-million-fundraising-platform/.

Thibodeau, P. (2012, September 11). “Netflix Guts Data
Center in Shift to Cloud.” Retrieved from
http://www.computerworld.com/s/article/9231146/
Netflix_guts_data_center_in_shift_to_cloud.

a As of November 2012, Netflix accounts for 29 percent of all
Internet traffic in North America.

43

Chapter 2

Cloud Service Models
This is what our customers are asking for to take them to the
next level and free them from the bondage of mainframe and
client-server software.

—Marc Benioff, CEO, Salesforce.com

Choosing the right service model is a critical success factor
for delivering cloud-based solutions. In order to choose the
right service model or combination of service models, one
must fully understand what each service model is and what
responsibilities the cloud service providers assume versus the
responsibilities the cloud service consumer assumes.

Infrastructure as a Service
There are three cloud service models: Software as a Service
(SaaS), Platform as a Service (PaaS), and Infrastructure as a
Service (IaaS). Each cloud service model provides a level of
abstraction that reduces the efforts required by the service
consumer to build and deploy systems. In a traditional
on-premises data center, the IT team has to build and manage
everything. Whether the team is building proprietary solutions
from scratch or purchasing commercial software products,
they have to install and manage one-to-many servers, develop

44

and install the software, ensure that the proper levels of
security are applied, apply patches routinely (operating
system, firmware, application, database, and so on), and much
more. Each cloud service model provides levels of abstraction
and automation for these tasks, thus providing more agility to
the cloud service consumers so they can focus more time on
their business problems and less time on managing
infrastructure.

Figure 2.1 displays what is called the cloud stack. At the
bottom is the traditional data center, which may have some
virtualization in place but does not have any of the
characteristics of cloud computing.
a

Figure 2.1 Cloud Stack

45

The next level up is IaaS. The National Institute of Standards
and Technology (NIST) defines IaaS as:

The capability provided to the consumer is to provision
processing, storage, networks, and other fundamental
computing resources where the consumer is able to deploy
and run arbitrary software, which can include operating
systems and applications. The consumer does not manage or
control the underlying cloud infrastructure but has control
over operating systems, storage, and deployed applications
and possibly limited control of select networking components
(e.g., host firewalls).

The Cloud Security Alliance (CSA), a standards organization
for cloud security, states that IaaS:

46

Delivers computer infrastructure (typically a platform
virtualization environment) as a service, along with raw
storage and networking. Rather than purchasing servers,
software, data center space, or network equipment, clients
instead buy those resources as a fully outsourced service.

With IaaS, many of the tasks related to managing and
maintaining a physical data center and physical infrastructure
(servers, disk storage, networking, and so forth) are abstracted
and available as a collection of services that can be accessed
and automated from code- and/or web-based management
consoles. Developers still have to design and code entire
applications and administrators still need to install, manage,
and patch third-party solutions, but there is no physical
infrastructure to manage anymore. Gone are the long
procurement cycles where people would order physical
hardware from vendors that would ship the hardware to the
buyer who then had to unpackage, assemble, and install the
hardware, which consumed space within a data center. With
IaaS, the virtual infrastructure is available on demand and can
be up and running in minutes by calling an application
programming interface (API) or launching from a web-based
management console. Like utilities such as electricity or
water, virtual infrastructure is a metered service that costs
money when it is powered on and in use, but stops
accumulating costs when it is turned off. In summary, IaaS
provides virtual data center capabilities so service consumers
can focus more on building and managing applications and
less on managing data centers and infrastructure.

There are several IaaS vendors in the marketplace and too
many to name in this book. The most mature and widely used
IaaS cloud service provider is Amazon Web Services (AWS).

47

Rackspace and GoGrid are also early pioneers in this space.
OpenStack is an open source project that provides IaaS
capabilities for those consumers who want to avoid vendor
lock-in and want the control to build their own IaaS
capabilities in-house, which is referred to as a private cloud.
There are a number of companies that are building IaaS
solutions on top of OpenStack similar to how there are many
different distributions of Linux.

Platform as a Service
The next level up on the stack is PaaS. What IaaS is to
infrastructure, PaaS is to the applications. PaaS sits on top of
IaaS and abstracts much of the standard application
stack–level functions and provides those functions as a
service. For example, developers designing high-scaling
systems often have to write a large amount of code to handle
caching, asynchronous messaging, database scaling, and
much more. Many PaaS solutions provide those capabilities
as a service so the developers can focus on business logic and
not reinvent the wheel by coding for underlying IT
“plumbing.” NIST defines PaaS as:

The capability provided to the consumer is to deploy onto the
cloud infrastructure consumer-created or acquired
applications created using programming languages, libraries,
services, and tools supported by the provider. The consumer
does not manage or control the underlying cloud
infrastructure, including network, servers, operating systems,
or storage, but has control over the deployed applications and

48

possibly configuration settings for the application-hosting
environment.

The CSA describes PaaS as:

The delivery of a computing platform and solution stack as a
service. PaaS offerings facilitate deployment of applications
without the cost and complexity of buying and managing the
underlying hardware and software and provisioning hosting
capabilities.

The CSA also mentions that PaaS services are available
entirely from the Internet. PaaS vendors manage the
application platform and provide the developers with a suite
of tools to expedite the development process. Developers give
up a degree of flexibility with PaaS because they are
constrained by the tools and the software stacks that the PaaS
vendor offers. The developers also have little-to-no control
over lower-level software controls like memory allocation
and stack configurations (examples: number of threads,
amount of cache, patch levels, etc.).

The PaaS vendors control all of that and may even throttle
how much compute power a service consumer can use so that
the vendor can ensure the platform scales equally for
everyone. Chapter 5 (“Choosing the Right Cloud Service
Model”) explores these service model characteristics in great
detail. Early PaaS pioneers like Force.com, Google Apps
Engine, and Microsoft Azure dictated both the platform stack
and the underlying infrastructure to developers. Force.com
dictates that developers write in Apex code and the
underlying infrastructure must be on Force.com’s data center.
Google Apps Engine originally required that developers code

49

in Python and on the Google data center while Azure
originally required .NET technologies on Microsoft data
centers. A new breed of PaaS vendors have emerged and have
created an open PaaS environment where consumers can
implement the PaaS platform on the infrastructure of their
choice and with many options for the development stack,
including PHP, Ruby, Python, Node.js, and others. This
approach is critical for widespread adoption by enterprises
since many enterprises require or prefer to keep some or all of
the application on-premises in a private cloud. Often, large
enterprises leverage hybrid clouds by keeping their data in a
private cloud and moving non-mission-critical components
into the public cloud.
b Both Google and Microsoft now support multiple
development languages, whereas in the past they only
supported one.

Heroku and Engine Yard are examples of mature public PaaS
solutions that provide multiple stacks for developers, although
at the time of the writing of this book they can be deployed
only on AWS. Another huge advantage of PaaS is that these
platforms integrate with numerous third-party software
solutions, which are often referred to as plugins, add-ons, or
extensions. Here are some examples of categories of
extensions that can be found in most mature PaaS solutions:

• Database
• Logging
• Monitoring
• Security
• Caching
• Search
• E-mail

50

• Analytics
• Payments

By leveraging APIs to access numerous third-party solutions,
developers can provide fail over, high service level
agreements (SLAs), and achieve huge gains in speed to
market and cost efficiency since they don’t have to manage
and maintain the technology behind the APIs. This is the
power of PaaS, where developers can quickly assemble a
collection of mature and proven third-party solutions simply
by calling APIs and not having to go through a procurement
process followed by an implementation process for each
third-party tool. PaaS allows companies to focus on their core
competencies and integrate with the best-of-breed tools in the
marketplace. PaaS is the least mature of the three cloud
service models but analysts predict a huge boom in the PaaS
marketplace in the next several years.
c

Software as a Service
At the top of the stack is SaaS. SaaS is a complete application
delivered as a service to the service consumer. The service
consumer has only to configure some application-specific
parameters and manage users. The service provider handles
all of the infrastructure, all of the application logic, all
deployments, and everything pertaining to the delivery of the
product or service. Some very common SaaS applications are
customer relationship management (CRM), enterprise
resource planning (ERP), payroll, accounting, and other
common business software. SaaS solutions are extremely
common for non-core-competency functionality. Companies

51

choose to rely on SaaS solutions for non-core functions so
they do not have to support the application infrastructure,
provide maintenance, and hire staff to manage it all. Instead
they pay a subscription fee and simply use the service over
the Internet as a browser-based service. NIST defines SaaS
as:

The capability provided to the consumer is to use the
provider’s applications running on a cloud infrastructure. The
applications are accessible from various client devices
through either a thin client interface, such as a web browser
(e.g., web-based email), or a program interface. The consumer
does not manage or control the underlying cloud
infrastructure, including network, servers, operating systems,
storage, or even individual application capabilities, with the
possible exception of limited user-specific application
configuration settings.

Deployment Models
Even though the focus of this book is on cloud service
models, it is important to understand the deployment models
of cloud computing as well. Figure 2.2 shows the NIST visual
model of cloud computing.

Figure 2.2 The NIST Definition of Cloud Computing

52

The NIST definition of a public cloud states:

The cloud infrastructure is provisioned for open use by the
general public. It may be owned, managed, and operated by a
business, academic, or government organization, or some
combination of them. It exists on the premises of the cloud
provider.

A public cloud is a multitenant environment where the end
user pays for usage of resources on a shared grid of
commodity resources alongside other customers. The end
users have no visibility into the physical location of where
their software is running other than where the data center is
located. An abstraction layer is built on top of the physical
hardware and exposed as APIs to the end user, who leverages
these APIs to create virtual compute resources that run in a
large pool of resources shared by many. Here are some
advantages of public clouds:

53

• Utility pricing. The end user pays only for the
resources it consumes. This allows the end user to
turn on more cloud services when it needs to scale up
and turn off cloud services when it needs to scale
down. The end user no longer needs to procure
physical hardware in this model and therefore has a
huge opportunity to eliminate wasted compute cycles
by consuming only what is needed, when it is needed.

• Elasticity. The end user has a seemingly endless pool
of resources at its disposal and can configure its
software solutions to dynamically increase or
decrease the amount of compute resources it needs to
handle peak loads. This allows the end user to react
in real time to abnormal spikes in traffic, where in a
private on-premises cloud or a noncloud solution the
end user would have to already own or lease the
necessary resources in order to handle peaks.

• Core competency. By leveraging public clouds, the
end user is essentially outsourcing its data center and
infrastructure management to companies whose core
competency is managing infrastructure. In return, the
end user spends less time managing infrastructure
and more time focusing on its own core competency.

Public clouds have some huge benefits but they also have
drawbacks. Here is a list of some of the risks of leveraging a
public cloud.

• Control. End users must rely on the public cloud
vendor to meet their SLAs for performance and
uptime. If a public cloud provider has an outage and
the end user has not architected properly for

54

redundancy, it is at the mercy of the cloud vendor to
restore services.

• Regulatory issues. Regulations like PCI DSS
(Payment Card Industry Data Security Standard),
HIPAA (Health Information Portability and
Accountability Act), and data privacy issues can
make it challenging to deploy in a public cloud. It
often requires a hybrid solution to meet these
regulations, although we are starting to see some
companies solve these issues entirely in the public
cloud by leveraging certified SaaS solutions for those
components that are hard to audit in a public cloud.

• Limited configurations. Public cloud vendors have a
standard set of infrastructure configurations that meet
the needs of the general public. Sometimes very
specific hardware is required to solve intensive
computational problems. In cases like this the public
cloud is often not an option because the required
infrastructure is simply not offered by the vendor.

A private cloud is defined as:

The cloud infrastructure is provisioned for exclusive use by a
single organization comprising multiple consumers (e.g.,
business units). It may be owned, managed, and operated by
the organization, a third party, or some combination of them,
and it may exist on or off premises.

The advantage of a private cloud is that it addresses the
disadvantages of the public cloud defined earlier (control,
regulatory issues, and configurations). Private clouds can be
on-premises or hosted in a cloud provider’s data center. In
either case, private cloud end users deploy on a single-tenant

55

environment and are not comingled with other customers. For
on-premises private cloud implementations, cloud service
consumers are in control of their own destiny since they still
manage the data center and they have the flexibility of
procuring any hardware configuration they desire. Hosted
private cloud users are still dependent on their cloud service
provider to provide infrastructure, but their resources are not
shared with other customers. This offers the user more control
and security but costs more than leveraging compute
resources in a multitenant public cloud. Private clouds reduce
some of the regulatory risks around data ownership, privacy,
and security due to the single-tenant nature of the deployment
model.

However, leveraging private clouds sacrifices some of the
core advantages of cloud computing, namely rapid elasticity,
resource pooling, and pay-as-you-go pricing. Private clouds
do allow end users to scale up and down over a shared pool of
resources, but those resources are limited to the amount of
infrastructure that is bought and managed internally as
opposed to leveraging a seemingly endless grid of compute
resources that are readily available. This drives up costs and
reduces agility because internal resources have to manage all
of this physical infrastructure, and excess capacity must be
procured and managed. Having excess capacity also destroys
the pay-as-you-go model because the end user has already
paid for the infrastructure whether it uses it or not.

To get the best of both worlds, many organizations leverage
both public and private clouds, which is called a hybrid cloud.
A hybrid cloud is defined as:

56

A composition of two or more distinct cloud infrastructures
(private, community, or public) that remain unique entities,
but are bound together by standardized or proprietary
technology that enables data and application portability (e.g.,
cloud bursting for load balancing between clouds).

A best practice for hybrid clouds is to use the public cloud as
much as possible to get all the benefits of cloud computing
like rapid elasticity and resource pooling, but leverage the
private cloud where the risks in areas of data ownership and
privacy are too high for the public cloud.

AEA Case Study: Choosing Cloud Service Models
Our fictitious company mentioned in the preface, Acme
eAuctions (AEA), built its entire infrastructure on-premises
before cloud computing was a marketing buzzword. AEA’s
management believes that moving to the cloud can give the
company a competitive advantage in the following areas:

• Speed to market
• Flexibility
• Scalability
• Cost

AEA already has a huge investment in physical infrastructure,
so its shift to the cloud will have to occur one piece of
infrastructure and one application domain at a time. Since
AEA already has a mature data center, it may choose to keep
certain pieces of its architecture on-premises in a private
cloud (for example, payment processing) and others in the
public cloud. AEA is a prime candidate for leveraging a
hybrid cloud solution. If AEA were a start-up and building a
solution from scratch, it would likely build its solution 100
percent in the public cloud to eliminate the need to raise

57

capital for building or leasing multiple data centers. For parts
of its application, such as payment processing, that it deems
too critical to put in a public cloud, it could leverage a SaaS
solution that is certified for regulatory controls, such as PCI
DSS.

The point here is that there is no one right answer to any
problem. Companies have many options when it comes to
cloud computing, which is why it is critical that management,
architects, product managers, and developers understand the
different deployment models as well as the service models.
We will discuss these key decision points with more AEA
examples in Chapter 5 (“Choosing the Right Cloud Service
Model”).

Summary
Cloud computing is revolutionizing the way software is built
and delivered. We are in a paradigm shift, moving away from
a legacy model where we buy and control infrastructure and
build or buy software to a new world where we consume
everything as services. It is critical that managers and
architects fully understand the pros and cons of cloud
computing, the definitions of each cloud service model, and
the definitions of each cloud deployment model. When
leveraged properly, cloud computing can bring an
organization unprecedented agility and greatly reduced costs
while connecting the organization to a global collection of
services. However, if cloud computing is not fully
understood, an organization can find itself building yet
another collection of IT-silo-based software solutions that
never delivers on its promises to the business.

58

References

Gartner. (2012, November 19). “Gartner Says Worldwide
Platform as a Service Revenue Is on Pace to Reach $1.2B.”
Press Release. Retrieved from http://www.gartner.com/it/
page.jsp?id=2242415.

Mell, P., and T. Grance (2011, September). “The NIST
Definition of Cloud Computing: Recommendations of the
National Institute of Standards and Technology.” Retrieved
from http://csrc.nist.gov/publications/nistpubs/800–145/
SP800–145.pdf.

Security Guidance for Critical Areas of Focus in Cloud
Computing v3.0. (2011). Retrieved from
https://cloudsecurityalliance.org/guidance/csaguide.v3.0.pdf.

a The five characteristics of cloud computing are network
access, elasticity, resource pooling, measured service, and
on-demand self-service.

b A private cloud is an IaaS or PaaS deployed within a service
consumer’s own datacenter or hosting facility’s data center
and is not deployed on a shared grid with other customers.
Public cloud is an IaaS or PaaS that is running on another
company’s data center in a shared environment with other
customers.

c Gartner predicts PaaS revenues near $1.5 billion in 2013,
compared to $900 million in 2011.

59

Chapter 3

Cloud Computing Worst
Practices
When you come to a fork in the road, take it.

—Yogi Berra, Hall of Fame baseball player

The U.S. Army invested $2.7 billion in a cutting-edge
cloud-based solution with the goal of communicating
real-time information from various sources to assist in
battlefield operations in Iraq and Afghanistan. The system
failed to deliver and actually hindered operations instead of
helping. As one person put it, “Almost any commercial
software product out there would be better.” Cloud computing
can create huge competitive advantages if applications and
services are correctly architected to satisfy the business
requirements. This chapter discusses the nine common
mistakes that companies make in the cloud. At the end of the
discussion for each common mistake, recommendations for
avoiding these mistakes are given.

60

Avoiding Failure When
Moving to the Cloud
Historically, many companies fail when it comes to
implementing new and transformational technologies. There
are many causes of failure. Sometimes companies fail
because they don’t fully understand or embrace new
technologies. Sometimes they rush into development mode
and forgo the necessary architecture and design steps.
Sometimes they have unrealistic expectations like
too-aggressive due dates, too large of a scope, not the right
people, and many other reasons. The next few sections focus
on the top reasons why companies moving to the cloud might
fail.

Migrating Applications to
the Cloud
A common misperception about cloud computing is the
notion that migrating existing applications to the cloud is a
simple solution that drives down costs. The reality is usually
the complete opposite. In fact, very few applications are good
candidates to move to the cloud in their current architecture.
Legacy software is architected to run within the corporate
firewalls of the company. If the software was built several
years ago, there is a high probability that the software is
highly dependent on the physical hardware it runs on and
possibly even on the technology stack it was written on. This

61

is often referred to as being a tightly coupled architecture,
because the software cannot function properly if it is
separated from its physical environment. Cloud computing
architectures require a loosely coupled architecture. As
mentioned in Chapter 2, elasticity is a key component of
cloud computing. For software to be truly elastic, meaning it
is able to be scaled up and down as needed, it must be
independent of its physical environment.

Most legacy architectures were never intended to be built in a
manner where the system automatically scales as the number
of transactions increases. Traditional scaling techniques often
rely solely on vertical scaling. Vertical scaling is
accomplished by increasing the existing hardware either by
adding more CPUs, memory, or disk space to the existing
infrastructure or by replacing the existing infrastructure with
bigger and more powerful hardware. Vertical scaling is
known as scaling up. Vertical scaling typically does not
require software changes beyond changing configurations to
allow the software to leverage the new infrastructure as long
as the same type of infrastructure is used.

With this type of scaling strategy, architects often forgo
designing their software to be independent of the
infrastructure. For example, if an application is built on an
IBM iSeries computer, the software is typically written in
ways to take full advantage of the proprietary infrastructure,
thus becoming tightly coupled to the hardware. Migrating an
application like that would take a major reengineering to
remove the dependencies from the iSeries so that the
application can become elastic in the cloud. For a system to
be elastic it must be able to handle unanticipated and sudden
spikes in workloads.

62

If elasticity is not the reason for moving the application to the
cloud and the company just does not want to manage and
maintain the infrastructure anymore, then what the company
most likely needs is a hosting solution. Hosting is not the
same thing as cloud computing. Hosting does not provide for
the five characteristics of cloud computing: broad network
access, elasticity, measured service, on-demand self-service,
and resource pooling. Hosting is simply renting or buying
infrastructure and floor space at a hosting provider’s facility.
Think of migrating to a hosting facility as forklifting an
application from site A to site B. Migrating an application to
the cloud is much more involved than that.

Scaling in the cloud can be done with vertical scaling but is
mostly accomplished through automated horizontal scaling.
Horizontal scaling is accomplished by adding additional
infrastructure that runs in conjunction with the existing
infrastructure. This is known as scaling out.

Horizontal scaling is often done at multiple layers of the
architecture. Some common horizontal scaling methods are to
add nodes by server farm type (Figure 3.1), by customer type,
and by application domain type (Figure 3.2). We will discuss
these design patterns in detail in Chapter 4 (“It Starts with
Architecture”).

Figure 3.1 Scale by Server Farm Type

63

Figure 3.2 Scale by Customer Type

64

Another challenge for legacy applications is whether the
system design is stateful or stateless. Cloud services are
stateless. A stateless service is a service that is unaware of
any information from previous requests or responses and is
only aware of information during the duration of the time that
the service is processing a given request. Stateless services
store the application state on the client, not the server, and
therefore do not have a dependency on the infrastructure. For
example, if a loan service receives a request to evaluate the
credit rating of a customer applying for a loan, the service has
no record of any information about the customer until it
receives an incoming message (usually as an XML or JSON
document). After it processes the document, determines the
credit score, and responds back to the requestor, it does not
store any of the information within the session and no longer
knows anything about the customer.

We will discuss application state in more detail in Chapter 6
(“The Key to the Cloud”) to explain why stateless

65

architectures are better suited for the cloud than stateful
architectures. The work required to change the underlying
architecture from maintaining state to being stateless is often
not feasible and a total replacement of the application is a
more realistic approach. Companies that migrate legacy
stateful applications to the cloud will likely be disappointed
with the end result if they expect to reap all of the benefits of
cloud computing.

In summary, unless an on-premises application was
architected as a collection of loosely coupled services to be
accessed by other technology and infrastructure-agnostic
services, then migrating to the cloud either will take a major
reengineering effort, will not reap many of the benefits of the
cloud, or might be completely unfeasible.

Recommendation: First, make sure the architects have a keen
understanding of the differences between stateless and
stateful design patterns. Understand if an application is a good
candidate for migrating to the cloud or if hosting or a rewrite
is a better option.

Misguided Expectations
Another common mistake is that companies often take on
cloud computing initiatives with inflated expectations. There
are many impressive success stories in recent years as
companies large and small have embraced the cloud. On April
9, 2012, Facebook CEO Mark Zuckerberg posted on
Facebook that his company had just purchased start-up
Instagram for its innovative mobile photo-sharing platform

66

for $1 billion. At the time it was purchased, the entire
company consisted of only 13 people and had over 100
servers running in the Amazon cloud supporting over 30
million users. In its first year of existence with only 3
engineers, the platform went from 0 to 14 million users with
over 150 million photos and several terabytes of traffic.

Another star of the cloud is Netflix. By late 2012, Netflix laid
claim to the fact that almost 29 percent of all Internet traffic
flowed through its streaming video platform to televisions,
computers, and devices to consumers in North America,
bypassing YouTube and even HTTP. The team at Netflix is a
poster child for how to run an innovative culture that pushes
the envelope and uses the cloud as a competitive advantage.

Both Instagram and Netflix are outliers. Instagram had the
luxury of starting from scratch and architecting for the cloud
out of the gate. Netflix made a business decision to put all of
its chips in the cloud and hired and trained an incredible
engineering team who continue to be pioneers in cloud
computing. Neither company represents a normal Fortune 500
company or an established small or medium-size business
looking to leverage cloud services. Many organizations have
a very complex enterprise consisting of numerous vendor and
proprietary solutions ranging from mainframe technologies,
to midsize computers, n-tier architectures, and every other
architectural pattern that was popular at one time or another.
Starting with a blank slate or getting an initiative from the
CEO to re-platform the entire product line with a new
cloud-based architecture is not the norm for most companies.
Often management, or even the architects, are so starstruck by
the success of companies like Netflix and Instagram that they
expect similar results, an outcome they most likely can’t

67

achieve even if they do a good job architecting. Setting an
expectation for the outcomes for a cloud computing initiative
should be based on the business case in support of the
initiative, not what other companies have achieved. Cloud
computing is only part of the success these companies had. A
bigger part of their success was their vision, the talent within
their team, and their ability to execute.

One of the biggest misguided perceptions of cloud computing
is that cloud initiatives will greatly reduce the cost of doing
business. That may be true for some initiatives but not all of
them; after all, cost is not the only reason to leverage the
cloud. Even if a company has a good business case for
reducing costs in the cloud, it takes more than cloud
computing to achieve the cost reduction. Companies need to
design with cost in mind. The cloud can be cost-effective if
the architecture effectively optimizes its usage of cloud
services. In order to optimize costs, the architecture must
monitor the usage of cloud services and track costs.

Cloud services are a metered service where the cost is
calculated on a pay- as-you-go model much like utilities such
as electricity and water are in our homes. In legacy
on-premises data centers, purchased infrastructure becomes a
sunk cost, which depreciates on the books over the course of
the several years. To plan for surges in traffic and growth
over time, a company must overbuy so that there is excess
capacity and usually redundancy for fail over at another
location. These monies are paid in advance and much of this
infrastructure may sit idle most of the time. A correctly
architected cloud-based equivalent solution would allow a
system to scale up and down as needed to align costs with
revenues, the infamous pay-as-you-go-model. The key word

68

there is correctly architected. If there are flaws in the
architecture and the cloud services consumed are not
appropriately turned off when not needed, the cloud can
become a very expensive proposition. On the flipside, if the
architecture does not scale up sufficiently or does not design
for failure, the end result can be outages and poor
performance, resulting in lost customers and revenue.

Not every problem is one that needs to be solved by cloud
computing. For example, I once had a client call me and ask
what cloud provider he should move his server to. When I
asked him what problem he was trying to solve he said he had
a code repository on a single server and wished to migrate it
to the cloud. The asset cost him about $3,000 in hardware and
software plus annual maintenance (if he was even paying for
it). If he moved the server to the cloud at a 50-cents-an-hour
rate, he would pay that rate every hour from this point
forward. At 50 cents an hour, the server would cost $12 a day
and for the year it would cost $4,380. To make matters worse,
he would continue to pay that each year where his
on-premises sunk cost of $3,000 was a one-time cost. Since
his application did not need to scale up and down, was
already paid for, and was not causing any issues, there was no
business case for it to move to the cloud and it certainly was
not going to be cheaper in the cloud. I proposed two solutions
to him. Solution 1: Do nothing. Solution 2: Replace the
on-premises solution with a Software as a Service (SaaS)
equivalent solution. There are many SaaS-based code
repositories that charge a minimal amount of money per
month and do not require any hardware or software to
manage.

69

Recommendation: Set realistic expectations. Break cloud
computing initiatives into smaller deliverables in order to
deliver business value sooner and allow the team to learn
along the way. Do not try the big-bang approach where the
team goes away for several months or a year with the hope of
delivering a large number of new cloud services. Understand
the pros and cons of each cloud service model. Design to
optimize, monitor, and audit cloud service consumption and
implement a governance process to enforce proper
consumption patterns. Each monthly bill from cloud service
providers should be closely monitored to ensure costs are
within expectations.

Misinformed about Cloud
Security
Security is another area where expectations are often off base
and there are two camps. The first camp believes in the myths
that cloud computing is catastrophically insecure and data
cannot be placed in a public cloud for any reason. People in
this camp refuse to consider public clouds and often resort to
building their own private clouds. If security and
infrastructure are not a core competency, then building
private clouds based out of fear might not be the best use of
company money and time. The second camp is the group that
believes that security is taken care of for them by the cloud
vendors. This camp then proceeds to deploy software and
services with gaping security holes into the cloud, where
cyber-criminals welcome them in with open arms.

70

The cloud is not only an enabler for enterprises but it is a
great enabler for cyber-criminals as well for two reasons.
First, cloud computing is still very immature and lacking
standards at this time. There are not a lot of engineers with
years of hands-on experience securing applications in the
cloud. The end result is that many cloud services are being
deployed by today’s corporations without the necessary
security and controls and are very vulnerable to all kinds of
attacks and breaches. The second reason why the cloud is an
enabler for cyber-criminals is that the cloud vendors are a
huge target because they house compute resources and data
for a large number of companies. The cloud providers
typically provide high levels of perimeter security, but it is up
to the companies deploying their services to build the
appropriate level of application security. For example, an
Infrastructure as a Service (IaaS) cloud provider like Amazon
Web Services (AWS) has world-class secure data centers,
white papers on how to build highly secure services on its
platform, and provides a suite of application programming
interfaces (APIs), making it easier to design for security.
However, it is up to the architects building the software on
AWS to encrypt the data, manage the keys, implement good
password policies, and so forth.

The truth about security and the cloud is quite simple. With
the proper security architecture, the public cloud can be more
secure than most on-premises data centers. Unfortunately,
very few corporations know enough about the security
requirements in the cloud necessary to architect for it, and
many others do not have skill sets internally to build the
appropriate level of security. A recent report on security
breaches from Forrester declares that 75 percent of all
security breaches are inside jobs. Of the inside jobs 63

71

percent were not caused by intent. Examples of causes are
lost, stolen, or misplaced assets such as thumb drives, disks,
documents, devices, laptops, and so forth. Architects should
sort through all the myths and hype about cloud security and
research factual information.

Security is not something one buys; security must be planned
and designed into software. Many of the security best
practices that have been applied in data centers for years
should be applied within the cloud, as well. We will discuss
how to design for security in Chapter 9 (“Security Design in
the Cloud”). What is important to note here is that deploying
or leveraging cloud services requires additional steps to
provide the appropriate level of security necessary to comply
with regulatory constraints and to pass audits such as HIPAA,
SOC-2, PCI DSS, and others. With the proper investment in
infrastructure and application security, cloud services can be
more secure than on-premises solutions, especially in
organizations whose competency is not security.

Most non-Fortune 500 companies simply do not have the
staff, expertise, and budget to build and maintain the
appropriate levels of security to keep up with the increasing
number of threats. For most cloud providers, security is a core
competency and they invest heavily in talent and budget
dollars to produce best-of-breed security solutions.
Leveraging security as a service from a cloud computing
vendor that excels at security can allow companies to obtain
higher levels of security than they have achieved in the past in
their own data centers. The trick is knowing what the security
risks are and addressing those risks with a combination of
technology, process, and governance.

72

Recommendation: Start by making sure the architects, the
product team, and the security professionals have a broad
understanding of cloud security, regulatory controls, and
auditing requirements, which we will cover in detail in
Chapter 9. If necessary, bring in an independent third party to
perform an assessment and to perform audits prior to
deployment and ongoing after deployment. Design for
security up front. Do not try to plug the holes later.

Selecting a Favorite Vendor,
Not an Appropriate Vendor
A common mistake many companies make is they don’t
thoroughly evaluate the cloud vendors and simply select
vendors that they are familiar with. For an obvious example
of this worst practice go to any .NET shop and the odds that it
has selected Microsoft Azure are incredibly high. That is not
to say that Azure is not a good technology, but it may not be
the right tool for the job. In Chapter 5 (“Choosing the Right
Cloud Service Model”) we will discuss the business use cases
that make sense for each service model. Azure is a Platform
as a Service (PaaS). The fact that a company writes .NET
code should not override the technical requirements that
determine whether the best cloud service model is SaaS,
PaaS, or IaaS. In fact, there are several PaaS solutions that
support .NET development.

The same applies to Google App Engine. Google’s PaaS
supports Python development. Instagram is a Python shop.
Had it defaulted to Google’s PaaS due to its choice of Python

73

as its stack, it might not have been able to achieve the
scalability that it achieved on AWS. This by no means is a
knock on Google or a declaration that AWS is any better than
Google. Simply put, for scaling requirements like
Instagram’s, an IaaS provider is a better choice than a PaaS.
PaaS providers have thresholds that they enforce within the
layers of their architecture to ensure that one customer does
not consume so many resources that it impacts the overall
platform, resulting in performance degradation for other
customers. With IaaS, there are fewer limitations, and much
higher levels of scalability can be achieved with the proper
architecture. We will revisit this use case in Chapter 5.
Architects must not let their loyalty to their favorite vendor
get in the way of making the best possible business decision.
A hammer may be the favorite tool of a home builder, but
when he needs to turn screws he should use a screwdriver.

Recommendation: Understand the differences between the
three cloud service models: SaaS, PaaS, and IaaS. Know what
business cases are best suited for each service model. Don’t
choose cloud vendors based solely on the software stack that
the developers use or based on the vendor that the company
has been buying hardware from for years.

Outages and Out-of-Business
Scenarios
When leveraging cloud services there should be an
expectation that everything can and will fail. It doesn’t matter
which cloud service model a company is relying on;

74

everything fails at some point. It is no different from the
power that runs our houses. All houses will encounter a
power outage at some point, whether it is a brief flicker or an
outage that lasts for hours or days. The same applies to cloud
computing. A best practice is to design for failure. In Chapter
13 (“Disaster Recovery Planning”) we will discuss best
practices for dealing with failures for each service model.
Here are a couple of examples where companies did not plan
for failure.

PaaS provider Coghead was an early market mover in the
database-as-a-service space. Database-as-a-service products
create huge speed-to-market advantages through the
automation of database administration tasks and by providing
autoscaling capabilities. Customers leverage these services
that allow them to focus more on their applications and less
on database management, thus providing greater agility.
Customers that leverage this type of service must understand
that they are signing up for vendor lock-in and giving up
some levels of control. Lock-in is nothing new in the world of
databases. Companies have been buying Oracle, SQL Server,
and DB2 licenses for decades and are used to being locked
into a vendor. The difference with on-premises computing is
that if the vendor goes away, the company still can use the
software for as long as it wants. In the cloud, when the vendor
goes away, the service often goes with it. In 2009, SAP
purchased Coghead and gave customers eight weeks to get rid
of their dependencies on Coghead because it was shutting
down the service. Many customers never considered this
scenario and were sent scrambling for the next eight weeks or
more to recover from the shutdown of their database
technology. A best practice for companies leveraging SaaS or
PaaS database technologies is to ensure that they have access

75

to the data outside of the service provider, whether it is
snapshots of database backups, a daily extract, or some
method of storing recoverable data independent of the service
and the provider.

By now, everyone has seen the issues created by outages from
major IaaS and PaaS providers like AWS, Rackspace,
Microsoft, and Google. Even companies like Netflix, which
has built a service called the Chaos Monkey, whose job is to
break things in production to test real-time recovery of the
overall platform, is not immune to outages.

When a provider like AWS has a service outage within one of
its availability zones, a large number of its customers’
websites and services go offline until AWS resolves the issue.
Most of these customer outages could have been easily
avoided had the customer anticipated and designed for failure.
Many customers only deploy to a single zone and have no
plan for recovery when that zone is impacted. A provider like
AWS provides a service level agreement (SLA) of 99.95
percent per zone. An SLA of 99.95 percent equates to 20
minutes and 9 seconds of downtime a month or roughly 4
hours a year. In 2011, a study by Emerson Network Power
reported the impact of downtime on the average business
equated to a loss of $5,000 a minute or $300,000 an hour.
Apply that number to the 4 hours of downtime a year
predicted by the AWS SLA and the average business is
looking at $1.2 million of lost business a year! What company
in its right mind would not build redundancy across the
availability zones knowing the potential losses of a single
zone failure? AWS provides multiple zones within a region
and multiple regions across the globe. Customers have the
opportunity to achieve SLAs far beyond the 99.95 percent by

76

building cross-zone redundancy and/or cross-region
redundancy. Everything fails eventually. If AWS takes a hit
for two hours, who is really to blame when the customer’s
website goes down because it did not design for failure?
Don’t blame the cloud provider; blame the architecture.

Recommendation: When choosing a cloud service model and
cloud service providers, understand the risks and points of
failure and design for failure. Understand the cloud providers’
SLAs, data ownership policies, and thoroughly examine all
legal binding documents and agreements. Each cloud service
creates some level of vendor lock-in. Study the cause and
effect of lock-in and make decisions at the service level. The
cloud is not an all-or-nothing proposition. There is no need to
be all in or all out. Choose wisely; architect even more
wisely.

Underestimating the Impacts
of Organizational Change
For a start-up beginning with a blank sheet of paper and
building new systems, the cloud has few barriers. For
established organizations with existing infrastructure and IT
staffs with limited experience in the cloud, the impacts of
organizational change should not be underestimated. Change
goes way beyond IT, though. Business processes, accounting
principles, human resource incentive programs, and legal
processes have never had to deal with data and services
existing outside of the enterprise. Procurement processes
change from buying physical assets and software licenses to

77

paying for virtual infrastructure and on-demand software.
Capacity planning changes from the science of forecasting
usage in the future to the science of real-time autoscaling.
Security now takes center stage and securing data outside of
the corporate firewall presents new challenges. The list goes
on. Organizations that think of cloud computing as just
another IT thing are in for a big surprise.

For some companies, their first attempt at cloud computing
might be a proof-of-concept, a research and development
exercise, or maybe a low-risk initiative like storing some
noncritical data with a cloud storage provider. Small
initiatives like these do not create large amounts of
organizational change, which lowers the risk of failure. It is
when companies take on larger projects or projects that create
more risks that they need to implement a plan to manage
organizational change.

AEA Case Study: Dealing with Change
To give a common example of how organizational change can
impact cloud computing initiatives, let’s reintroduce our
fictitious online auction company Acme eAuctions (AEA).
AEA built an internal customer relationship management
(CRM) system nearly 10 years ago to support its on-premises
web-based auction platform. Several members of the team
that worked on the application are still employed at AEA
today and are very proud of their work. However, as the years
have passed the application has become increasingly
expensive to manage and maintain and does not provide many
of the features that a modern CRM tool has today, such as a
mobile application, integration with third-party tools, social
networking, and more. AEA has decided to move to a

78

SaaS-based CRM solution and the IT team is fighting the
decision. They are quoting articles and blog posts about
problems with security and uptime in the cloud. The security
team is struggling with the concept of putting customer data
in the cloud. The SaaS vendor could have the solution turned
on and configured in one day, but the effort to export the data
out of the legacy system and into the new SaaS-based system
is blocking the project. What should be a quick-and-easy win
for IT has become a battle between the business and IT. How
could AEA have avoided this conflict and the long project
delays that the conflict has created?

The conflict is not a technology problem; it is a people
problem. We have seen this pattern over and over though the
years, whether people were resisting moving off of the
mainframe to the client-server model, or pushing back on the
enterprise use of the Internet, or refusing to embrace changes
in business processes. The bottom line is when people are told
to change, often their first response is to resist that change.
We will discuss strategies for managing change and discuss
how AEA addressed the organizational issues to get the
project moving forward in Chapter 15 (“Assessing the
Organizational Impact of the Cloud Model”).

Recommendation: If possible, start with smaller, lower-risk
initiatives as the early candidates for cloud computing
projects. If the projects are risky and large in size, do not
underestimate the impacts of organizational change. Assign
somebody as the change leader. That person can be internal or
external. Create a sense of urgency, form and empower a
team to own the project, create a vision of the future state, and
drive that message throughout the organization over and over

79

using every communication mechanism possible (town hall
meetings, blogs, newsletters, meetings, posters, etc.).

Skills Shortage
Enterprises often don’t have the required expertise to build
cloud-based solutions. The average medium-to-large
company that has been in business for more than a few years
typically has a collection of applications and services
spanning multiple eras of application architecture from
mainframe to client-server to commercial-off the-shelf and
more. The majority of the skills internally are specialized
around these different architectures. Often the system
administrators and security experts have spent a lifetime
working on physical hardware or on-premises virtualization.
Cloud architectures are loosely coupled and stateless, which
is not how most legacy applications have been built over the
years. Many cloud initiatives require integrating with multiple
cloud-based solutions from other vendors, partners, and
customers. The methods used to test and deploy cloud-based
solutions may be radically different and more agile than what
companies are accustomed to in their legacy environments.
Companies making a move to the cloud should realize that
there is more to it than simply deploying or paying for
software from a cloud vendor. There are significant changes
from an architectural, business process, and people
perspective. Often, the skills required to do it right do not
exist within the enterprise.

Many legacy architectures have applications that depend on
state, as mentioned earlier in this chapter. Building software

80

for the cloud requires developing stateless applications. The
secret to well-architected cloud services is to fully understand
and embrace the concepts of RESTful services.
a Many companies claim that they have service-oriented
architectures (SOAs) but many implementations of
Representational State Transfer (REST)–based SOA are
nothing more than just a bunch of web services (JABOWS).
Building RESTful services correctly requires exceptional
engineers who know how to architect services in a manner
that leverages the virtual compute resources in the cloud. If
the developers building solutions in the cloud do not correctly
handle the application state, do not provide the correct level
of abstraction, and do not apply the right level of granularity,
the cloud experience for that company will not be a
pleasurable one. Another area where skills tend to fall short is
in application security. Companies have built software for
years that has lacked the appropriate level of application
security. The applications often get by because the perimeter
security might be good enough to keep most attacks out.
Writing software to run in the cloud outside of the corporate
firewall requires developers and architects who are highly
knowledgeable about application security. On the system
administration side, development skills are a higher priority in
the cloud. Since many manual management tasks are now
available as cloud services, administrators need to develop
software in conjunction with the application development
team. This also requires that administrators use similar
application development tools and processes and become part
of the release management lifecycle. In many companies
application development and system administration do not
work closely together and have entirely different skill sets.
We will discuss the working relationship between
development and operations in detail in Chapter 14

81

(“Leveraging a DevOps Culture to Deliver Software Faster
and More Reliably”).

Deploying, monitoring, and maintaining software in the cloud
can be drastically different from how an organization
currently handles those tasks. Whether developers,
administrators, help desk staff, scrum masters, or whatever
their role, these people need to have a solid understanding of
cloud computing to excel in their jobs. They will need to have
a broad knowledge of networking, security, distributed
computing, SOA, web architectures, and much more. This
change is no different from what happened when
organizations shifted from mainframes to client-server
architectures. People need to learn new methods in order to
make the transition. At the same time, the company needs to
keep the lights on and maintain the legacy systems. It is hard
to find people who know all the different architectures from
the old legacy approaches to the new cloud-based approaches.
It can be a good strategy to bring in new staff with experience
in the cloud and to help transform the organization and train
the existing staff along the way. Trying to move to the cloud
with people who are not experienced in cloud architectures
will most likely not produce the best results.

Recommendation: Evaluate the current staff and identify skill
gaps based on the project requirements. Plug those skill gaps
with experienced talent, either full time or contract resources.
Make sure the existing staff learns from the experienced
people along the way. If only experienced people from the
outside get to work on these initiatives, there could be a lot of
resentment from within. Attend meet-ups and conferences
where practitioners present (beware of vendor pitches), and
reach out to local organizations that have had success in the

82

cloud. Encourage team members to take courses, read blogs,
and collaborate through their networks to learn about the
other people’s experiences.

Misunderstanding Customer
Requirements
Sometimes IT people neglect the business side of the equation
and build the cloud solution that is best for IT. It is critical
that part of the service model selection is based on customers’
needs. For example, if a company is building an SaaS solution
that is processing credit card information, the business
requirements will be drastically different than if the company
is building a sports news website. If a company is processing
patient health records or top secret government information,
the business requirements around security and privacy are far
greater than if the company is building a streaming video
product.

The details of the business requirements should drive which
type of cloud deployment model (public, private, hybrid) and
which type of service model (IaaS, PaaS, SaaS) to architect
the solution on. If a company is building consumer-facing
websites where users voluntarily exchange their personal data
for a free service (Facebook, Twitter, Instagram, etc.), the
company can easily justify putting everything in a public
cloud. If a company is selling to enterprises such as retail
establishments, hospitals, and government agencies, there is a
very good chance that some customers will demand that at
least some of the data is either in a private cloud or does not

83

leave their premises. It is critical to know what the end-user
requirements are when it comes to things like security,
privacy, integration, regulatory constraints, and so forth. We
will discuss these patterns in detail in Chapter 4 (“It Starts
with Architecture”). If a company is building SaaS solutions,
it should expect customers to demand the highest levels of
security, privacy, and auditability requirements. SaaS
software has to be secure, reliable, scalable, and configurable
or many customers won’t buy it. It is key to understand
customers’ expectations up front so their needs can be built
into the underlying architecture from the start.

Recommendation: Understand the business requirements and
customer expectations of cloud computing before selecting
cloud service models and cloud types. Requirements drive the
decisions; the decisions should not drive the requirements.
Get clarity on the product definition and requirements,
perform a security and regulatory assessment of the
requirements, and add the gaps to the overall product backlog.
Have a list of frequently asked questions handy that answers
all of the questions and concerns that the typical customer
will have for the cloud-based solution.

Unexpected Costs
One of the promises of cloud computing is that the
pay-as-you-go model greatly reduces the cost of IT
infrastructure. This only holds true if the software is
architected and managed in a way that optimizes the use of
cloud services. One of the powerful things about cloud
computing is how quickly services or computing resources

84

can be turned on, but if the process of consuming cloud
resources is not closely governed, then the monthly costs can
skyrocket, earning you a visit to the CFO’s office to explain
why you just destroyed her monthly forecast.

Each cloud service model brings a unique set of challenges
for controlling costs. SaaS companies typically charge per
user or by tier. For example, GitHub, a SaaS-based code
repository, has tiers that range from free for public
repositories, a Micro tier for up to five repositories for a
minimal monthly fee, and several other tiers all the way to the
Platinum plan that allows over 125 repositories for $200 a
month.
b Often these tools are left ungoverned and a company that
should be using the Silver plan with 20 repositories at $50 a
month is paying $200 for the Platinum and has no idea what
repositories exist, who manages them, and which ones are
even still being used. Some SaaS solutions charge monthly by
user; others are transaction based. Transaction-based SaaS
solutions like an e-mail campaign management tool charge
per e-mail sent. Some companies use the e-mail tool’s APIs
and integrate them into their products. If they don’t build in
safeguards to protect from erroneous code like an infinite
loop or a miscalculation, the end results could be a monthly
bill that is thousands of dollars higher than expected. Make
sure these risks are identified and throttles are built into the
system to protect against such scenarios.

PaaS solutions have their share of challenges as well, when it
comes to optimizing costs. One of the big benefits of PaaS is
that the platforms handle scaling during peak times. The
promise of PaaS is that it allows developers to focus on
business requirements while the platform handles the

85

infrastructure. Just as in the previous SaaS example, controls
must be put in place to ensure that software bugs or even
unexpected excessive workloads do not result in the PaaS
consuming huge amounts of infrastructure and running up an
enormous bill for the month.

IaaS solutions are even more critical to govern closely. It is so
easy to deploy a virtual compute resource that without the
right controls in place a company can quickly get into a
“server sprawl” situation where hundreds of servers are
running in various developer and R&D environments and the
meter is running on them 24/7. To make matters worse, many
of these servers will have dependencies on them that make
them hard to shut off. One of my clients was a start-up with a
small group of developers who managed everything
manually. It worked well because each person was
responsible for his own area and it was easy to track all of the
virtual servers and what their dependencies were. The small
start-up was purchased by a big company and many people
were added to the team. No time was allocated to build in
processes around managing compute resources and almost
overnight the number of servers quadrupled. To make matters
worse, nobody was really aware of the impact until finance
noticed that the bill was starting to get enormous.
Unfortunately, a number of months had passed before this
was noticed, and many of the compute resources had
dependencies within the software lifecycle. Each project had
one-to-many development, test, quality assurance, and stage
environments, and they did not all have the same versions of
patches and updates on them. When finance demanded that
the team reduce costs, it took several months to take
inventory and implement a plan to consolidate and
standardize environments. To this day, that client believes

86

that the cloud is more expensive than on-premises computing
and is looking for ways to do less in the public cloud. The real
issue with costs was a lack of governance, not the cost of
cloud computing in public clouds.

The most expensive part of cloud computing usually has
nothing to do with the cloud at all. Often, companies
underestimate the effort it takes to build software in the cloud.
In February 2013, KPMG International published a survey
taken by 650 executives worldwide on the adoption of cloud
computing. The survey found that one-third of the
respondents discovered that costs related to their cloud
computing initiatives were higher than they expected. The
respondents pointed to a lack of in-house skills and
complexities with integrating to existing systems as some of
the main reasons for the inflated costs. With the right
architecture and governance, cloud computing can drive down
costs substantially within an organization, but there are no
shortcuts or magic pills that will guarantee that success. At
the end of the day it comes down to architecture and planning.
In Chapter 4 (“It Starts with Architecture”), we will discuss
this in more detail.

Recommendation: Understand the costs of each cloud service
model and establish the appropriate levels of governance and
software controls to optimize and monitor costs. For
companies with legacy solutions, don’t underestimate the
effort required to integrate with legacy architectures and the
costs of training existing employees or hiring experienced
engineers.

87

Summary
The reality is that implementing cloud initiatives can be much
more challenging than many people are led to believe.
Companies that successfully implement cloud initiatives can
reduce IT costs, improve speed to market, and focus more on
their core competencies. Start-ups have the luxury of building
from scratch for the cloud, but established companies have
both legacy solutions and legacy IT shops that may require
significant changes in order to have success moving to the
cloud. Companies attempting to build in the cloud should
become aware of the worst practices mentioned in this
chapter and pay attention to the recommendations. The
marketing hype from the vendors makes cloud computing
initiatives seem incredibly easy. Don’t be fooled by their
PowerPoint slides. It is critical that a company fully
understands the pros and cons of each service model and the
implications pertaining to key issues such as security, privacy,
data ownership, regulations, costs, impact of organization
change, and much more.

References

Bennett, C., and A. Tseitlin (2012, July 30). “Chaos Monkey
Released into the Wild.” Retrieved from
http://techblog.netflix.com/2012/07/
chaos-monkey-released-into-wild.html.

Cloud Security Alliance. 2011. “Security Guidance for
Critical Areas of Focus in Cloud Computing v3.0.” General
format, retrieved from https://cloudsecurityalliance.org/
guidance/csaguide.v3.0.pdf.

88

Erl, Thomas. 2008. Service-Oriented Architecture: Concepts,
Technology, and Design. Boston, MA: Prentice Hall.

Hill, S., and R. Wright (2013, February). “The Cloud Takes
Shape: Global Cloud Survey: The Implementation
Challenge.” Retrieved from http://www.kpmg.com/Global/en/
IssuesAndInsights/ArticlesPublications/
cloud-service-providers-survey/Documents/
the-cloud-takes-shapev2.pdf.

Hoff, T. (2012, April 9). “The Instagram Architecture that
Facebook Bought for a Cool Billion Dollars.” Retrieved from
http://highscalability.com/blog/2012/4/9/
the-instagram-architecture-facebook-bought-for-a-cool-billio.html.

Johnson, R. (2011, July 5). “Army’s $2.7 Billion Cloud
Computing System Does Not Work.” Retrieved from
http://www.rawstory.com/rs/2011/07/05/
armys-2–7-billion-cloud-computing-system-does-not-work/.

Linthicum, David S. 2009. Cloud Computing and SOA
Convergence in Your Enterprise: A Step-by-Step Guide.
Boston, MA: Addison-Wesley.

n.a. (2012, September 27). “Cyber Security: 75% of Data
Breaches Are Inside Jobs.” Retrieved from
http://www.theinformationdaily.com/2012/09/27/
75-of-data-breaches-are-inside-jobs.

Preimesberger, C. (2011, May 13). “Unplanned IT Downtime
Can Cost $5K per Minute: Report.” Retrieved from
http://www.eweek.com/c/a/IT-Infrastructure/
Unplanned-IT-Downtime-Can-Cost-5K-Per-Minute-Report-549007/.

89

Wainewright, P. (2009, February 3). “Coghead’s Demise
Highlights PaaS Lock-out Risk.” Retrieved from
http://www.zdnet.com/blog/saas/
cogheads-demise-highlights-paas-lock-out-risk/668.

a Thomas Earl states that “statelessness is a preferred
condition for services and one that promotes reusability and
scalability.” These are fundamental characteristics of cloud
services.

b GitHub’s cost as of May 2013.

90

Chapter 4

It Starts with Architecture
A doctor can bury his mistakes but an architect can only
advise his clients to plant vines.

—Frank Lloyd Wright, U.S. architect

When constructing a house, nobody would ever consider not
buying materials and tools and hiring resources as the first
steps of the building process. Yet, too often in the world of IT
we see teams rush to the development phase without a clear
vision of what the business and technical requirements are.
With cloud computing, the need for a pragmatic approach is
even more critical because the risks are greater as more
control is shifted to cloud service providers. Whether a
company has an official enterprise architecture practice in
place or not, success in the cloud is dependent on applying the
basics of sound architectural principles and asking these six
questions: Why, Who, What, Where, When, and How.

91

The Importance of Why,
Who, What, Where, When,
and How
There have been philosophical debates for decades on the
value of enterprise architecture (EA). Architecting for the
cloud does not require that an official EA organization exists
within a company or that any formal EA methodology like
The Open Group Architecture Framework (TOGAF) or the
Zachman Framework is used. However, architects should
perform the necessary discovery steps that most
methodologies suggest before diving headfirst into the clouds.
A mistake that many companies make is picking a vendor
before doing their due diligence. It is easy for a Microsoft
shop to automatically default to Microsoft’s Azure even
though Platform as a Service (PaaS) might not be the best
service model to solve the business challenge. Architects
should seek answers to the following questions:

Why. What problem are we trying to solve? What are the
business goals and drivers?
Who. Who needs this problem solved? Who are all the actors
involved (internal/external)?
What. What are the business and technical requirements?
What legal and/or regulatory constraints apply? What are the
risks?
Where. Where will these services be consumed? Are there
any location-specific requirements (regulations, taxes,
usability concerns, language/locale issues, etc.)?

92

When. When are these services needed? What is the budget?
Are there dependencies on other projects/initiatives?

The final question to ask is often overlooked, even though it
is one of the most important questions. This question focuses
on the current state of the organization and its ability to adapt
to the changes that cloud computing brings.

How. How can the organization deliver these services? What
is the readiness of the organization, the architecture, the
customer?

After collecting the information for these questions, architects
are in a better position to select the best service model(s) and
deployment model(s) for their company. In Chapter 5,
“Choosing the Right Cloud Service Model,” we will see how
factors like time, budget, and organizational readiness can
impact the cloud service model decisions just as much as the
business and technical requirements. Other factors that can
contribute to the cloud service model and deployment model
decisions are whether the project is a greenfield effort being
built from scratch from the ground up, a migration of a legacy
system, or a combination of the two. Legacy systems can
create barriers that make it difficult to use certain cloud
service models and deployment models. There are many
cloud service providers that offer migration services that
should be evaluated if a cloud migration is considered.

The types of users and data have an impact on the cloud
architecture, as well. For example, a social networking
website where consumers opt in and agree to share their data
has very different requirements from a health application
capturing and storing medical records for cancer patients. The
latter has many more constraints, risks, and regulatory

93

requirements that most likely will result in a very different
cloud architecture from the social network platform. We will
discuss these decision points in detail in the next chapter.

Start with the Business
Architecture
A good first step when starting a major cloud initiative is to
create a business architecture diagram. This is important
because it provides insights into the various touchpoints and
business functions across the enterprise or at least across the
part of the enterprise that is in scope for the initiative.

AEA Case Study: Business Architecture Viewpoint
Our fictitious online auction company, Acme eAuctions
(AEA), is considering moving its auction platform to the
cloud. Its original platform was built in-house several years
ago, before cloud computing was a popular concept. AEA has
been very successful over the years, but the platform is
showing its age and the company is spending too much
money just keeping the platform stable, leaving very little
time to deliver enhancements such as mobile, social, and rich
media functionality. AEA has received approval from the
board to build a new platform and believes that leveraging the
cloud can help it achieve scale at a lower price point while
delivering with greater speed to market. Before diving into
the new platform, AEA wisely mapped out its future state
business architecture as shown in Figure 4.1.

Figure 4.1 Business Architecture

94

Using this diagram, the team can see the various points of
integration and endpoints within the architecture. Across the
top of the diagram, AEA clearly defines who the external
actors are in the system and the different touchpoints that
users will use to interact with the system. All external access
will come through the application programming interface
(API) layer. AEA has defined six core business processes that
make up the workflow of a product, from its inception to the
sale to the close of the transaction. Underneath the business

95

processes are a collection of services. There are services in
support of the buyers and another set of services for the
sellers. Underneath those services are a collection of shared
business services that are used by both buyers and sellers.
Underneath those services are utility services such as security,
events, and notifications. The bottom layer shows integration
points to several other enterprise systems that this platform
will feed.

Even though the first phase of the project may only focus on a
single component of the architecture, it is important to
understand how that component fits into the entire business
architecture. Too often we build things with a limited view of
the enterprise and wind up deploying solutions that are
difficult to integrate within the enterprise. It is like planning
to install a door in the front entrance with a limited
understanding of what the rest of the house looks like. Sure,
we can successfully install the door within the doorframe, but
what if the door opens out and we did not know that another
worker was putting a screen door in front of the door? It
doesn’t matter if the screen door is getting installed now or a
year from now; either way we would have to replace the
original door to open in. The same applies to building cloud
services. The architects should have some level of visibility
into the overall vision of the enterprise before they start
installing doors.

AEA Case Study: Defining the Business Problem Statement
AEA’s existing auction site is built of many proprietary
components. The goal of the new architecture is to create an
open platform and expose an API layer so that channel
partners, app store developers, and affiliate network partners
can connect seamlessly to the auction platform. AEA wants to

96

create an Auction PaaS. It will provide all of the
infrastructure and application logic for running auctions so
other companies can build content on top of this platform.
This approach brings more sellers and buyers to the AEA
platform, thereby increasing revenue. In the old model, AEA
had a large sales force that focused on attracting sellers and
buyers to sign up on the AEA website. The new model allows
companies that have merchandise to set up virtual stores and
run auctions on top of the AEA platform. In addition, AEA
wants to modernize its platform to include mobile and social
features. It believes mobile will increase transactions, and
social media is a great method of getting its brand name out to
its customers’ networks. Transactions through its API layer
equate to new revenue streams that are not available in its
current architecture.
In the new architecture, AEA is commited to a
service-oriented architecture (SOA). Most of its legacy
architecture was built in silos over the years and is made up of
many different technology stacks, including Java, .NET, and
PHP. The company currently has two data centers, both at
about 80 percent capacity. Senior management does not want
to expand or invest in any more physical data centers and has
asked for at least a 20 percent reduction in infrastructure
costs. The team has until the end of the year to enable the
integration with channel partners, app store developers, and
the affiliate network. The anticipated revenue from this new
integration is what has justified this project, so it is critical
that the date is met (they have six months to make this
happen).
AEA Case Study: Pragmatic Approach
Jamie Jacobson, the lead architect on the project, starts to
answer the six key questions as a first step. AEA uses an agile

97

methodology, but it understands that there are some necessary
discovery steps that must take place before the team starts
building solutions. In fact, with the tight timeline, it is highly
likely that they will have to leverage SaaS, PaaS, or IaaS
solutions in many areas as opposed to building things
themselves if they are to have a prayer of hitting the date.
Here are Jamie’s notes:
Why. Create open platform to enable new revenue streams.
Reduce data center footprint and infrastructure costs.
Mobile and social to attract customers, drive more traffic.
Who. AEA needs this to stay competitive.
New actors: channel partners, app store developers, affiliate
network.
Data center operations need to modernize and reduce
infrastructure.
What. Need stronger security now that system is exposed to
third parties.
Need to connect to partners’ fulfillment and shipping
partners.
Must protect/secure all transactions; possible client audits.
Must scale to handle random spikes in traffic.
Where. Geographic rules for selling products (age, taxes).
Buyers and sellers can live in any country.
When. Third-party integration by end of year (six months).
How. Limited IT experience in cloud and SOA.
Operating model is significantly different—never supported
third parties before.
The next step for Jamie and the team is to recommend an
architecture to accomplish these goals. They call this effort
Sprint 0. The first sprint, which they decided would be one
week long, is to take the six questions and iterate though them
to get enough detail to start another architecture sprint. In the

98

second architecture sprint the architect team needs to
accomplish these goals:

• Research cloud computing.
• Propose an architecture for the immediate goal of

integrating with third parties with the long-term goal
of delivering an auction PaaS.

• Determine nonfunctional requirements for the
platform.

AEA is off to a good start, but there is much work to do.
Sprint 0 is a critical discovery exercise. The team needs to
gather a lot of information fast and a task force should be
assigned to assess the organizational impacts. As we approach
as they deal wit progress through this book, Jamie and the
team will continue their pragmatic h issues like security, data,
service level agreements, scaling, and more.

Identify the Problem
Statement (Why)
The question, “What problem are we trying to solve?” (the
why) is the single most important question to answer. What
are the business drivers for leveraging cloud computing
services within an organization? The answer is different for
every company, every culture, and every architecture. For
example, for start-ups, building new in the cloud is a
no-brainer. In fact, if a start-up decides to build and manage
its own infrastructure, it better have a very compelling reason
for selecting physical infrastructure and data centers over
cloud computing, because most venture capitalists (VC) and

99

angel investors will question the management team’s
leadership.

On the other side of the equation are large established
enterprises with huge amounts of physical infrastructure on
the balance sheets and many different technology stacks and
legacy architectures deployed in production environments.
Figuring out how to best leverage cloud services is a much
more complicated decision to make in enterprises. If one of
the business drivers is to “reduce IT infrastructure costs,” a
start-up can easily achieve that goal by building its greenfield
applications in the cloud without investing in data centers and
infrastructure and all the people to manage them. An
established enterprise will have to evaluate every single
component of the existing enterprise separately to determine
what can be moved to the cloud and which deployment model
(public, private, hybrid) makes sense for each component.

A large organization may choose to reduce costs many
different ways and leverage different service models. For
example, it may be supporting numerous commercial
software products to manage noncore competency business
processes like payroll, human resources tasks, accounting,
and so forth. The organization may decide to replace these
solutions with Software as a Service (SaaS) solutions. At the
same time it may not be as easy to migrate legacy
applications to a PaaS or an Infrastructure as a Service (IaaS)
cloud provider because the underlying architecture does not
support web-based or stateless architectures and the cost of
rearchitecting makes it unfeasible. Instead, the organization
may choose to leverage the cloud for specific purposes like
backup and recovery, provisioning testing and development
environments on demand, or integrating with an external API

100

for a specific set of data (maps, Zip code lookups, credit
check, etc.). Every piece of the overall architecture should be
evaluated independently to ensure that the optimal cloud
service and deployment models are selected. With the
exception of greenfield start-ups, rarely does it make sense to
select one cloud service model and one deployment model.
Use a hammer when you have nails and a screwdriver when
you have screws.

Evaluate User
Characteristics (Who)
The who question identifies the users of the system, both
internal and external. Users may be people or systems.
Identifying the actors helps discover what organizations
(internal and external) interact with the overall system. Each
actor within a system may have its own unique needs. It is
possible that one cloud service model does not meet the needs
of every actor.

AEA Case Study: Multiple Cloud Service Models
In the AEA business architecture diagram, there are
consumers interfacing with a high-scale website and there are
suppliers interfacing with an inventory system. If AEA wants
to scale to eBay levels, it may choose the IaaS service model
so it has more control over the overall performance and
scalability of the system. For the inventory system, it may
choose to migrate to a SaaS solution. The key takeaway is
that an enterprise often leverages multiple cloud service

101

models to meet the needs of the various actors within a
system.

Once the actors are identified, it is important to understand
the characteristics of these actors, such as demographics (age
group, how tech savvy they are, what countries they are in,
etc.), type of actor (person, business, government, etc.), type
of business (social media, health, manufacturing, etc.), and so
forth. The who question uncovers numerous functional and
nonfuntional requirements. In the case of cloud computing,
actor characteristics drive important design considerations in
the areas of privacy, regulations, usability, risk, and more.

Identify Business and
Technical Requirements
(What)
The what question drives the discovery of many functional
and nonfunctional requirements. Functional requirements
describe how the system, application, or service should
function. Functional requirements describe the following:

• What data the system must process.
• How the screens should operate.
• How the workflow operates.
• What the outputs of the system are.
• Who has access to each part of the system.
• What regulations must be adhered to.

102

Nonfunctional requirements describe how the architecture
functions. The following list contains the categories of
nonfunctional requirements that should be evaluated to assist
in selecting the appropriate cloud service and deployment
models:

• Usability. Requirements for end users and systems
that use the platform.

• Performance. Ability to respond to user and system
requests.

• Flexibility. Ability to change at the speed of business
with minimal code changes.

• Capability. Ability to perform business functions
both current and future.

• Security. Requirements around security, privacy, and
compliance.

• Traceability. Requirements around logging, auditing,
notifications, and event processing.

• Reusability. Level of reuse required both internally
and externally.

• Integrability. Ability to integrate with various
systems and technologies.

• Standardization. Specific industry standards to
comply with.

• Scalability. Ability to scale to meet demands of the
business.

• Portability. Capability to deploy on various hardware
and software platforms.

• Reliability. Required uptime and SLAs, along with
recovery mechanisms.

103

Visualize the Service
Consumer Experience
(Where)
A good building architect would never build a plan for a
house if he had no idea where the house was going to be
located, how big the lot is, what the zoning restrictions are,
what the climate is like, and all of those constraints that come
with the location of the building. For example, in Florida,
much of the architecture of a house focuses on withstanding
high winds during hurricane season and extreme heat during
the summer. The architecture for a new house in Toronto will
likely avoid the design costs associated with withstanding
hurricane-force winds but instead focus more on holding up
to cold temperatures and distributing heat evenly throughout
the structure.

With cloud computing, it is critical to understand the impact
of laws as they relate to the locale where the cloud services
are being consumed and where the data is being stored. Laws
and regulations have different constraints across countries,
provinces, states, and even counties. For example, in the
couponing industry, marketing campaigns focusing on
tobacco, alcohol, and even dairy must comply with laws
against promoting these categories within certain counties.

The 2013 Global Cloud Computing Report Card, published
by Business Software Alliance (BSA), stated, “Cloud services
operate across national boundaries, and their success depends
on access to regional and global markets. Restrictive policies

104

that create actual or potential trade barriers will slow the
evolution of cloud computing.” Some countries, like Japan,
have modernized their legislation around privacy law,
criminal law, and IP protection to facilitate the digital
economy and cloud computing. On the other end of the
spectrum are countries, like China, that have complex laws
that discriminate against foreign technology companies and
restrict the types of data that can flow in and out of the
country. Countries that have restrictions on data transfers
outside of their country create challenges for technology
companies trying to build cloud solutions.

Perhaps one of the most controversial laws impacting cloud
computing is the USA Patriot Act of 2001. The Patriot Act
was signed into law shortly after the 9/11 terrorist attacks on
the World Trade Center in New York City. This new
legislation gave the U.S. law enforcement and intelligence
agencies the ability to inspect digital data from any U.S.
company or any company that conducts business in the
United States. Many non-U.S. countries storing sensitive data
fear that the U.S. government might seize their data and
therefore choose to store their data in-house and opt out of the
cloud. What many people don’t know is that many countries
have similar laws that give their intelligence agencies the
same type of power and access that the Patriot Act has in
order to help protect against terrorism.

Architects need to become familiar with the laws and
regulations that pertain to their business and their data. The
impact of these laws can influence decisions like public
versus private cloud, cloud versus noncloud, and local vendor
versus international vendor. Often, hybrid cloud solutions are
used to address these concerns. Companies often leverage

105

public IaaS or PaaS service models for the majority of their
processing needs and keep the data they do not want subject
to seizure under laws like the Patriot Act in a private cloud or
in an in-house noncloud data center.

A more exciting where question is: What devices and
touchpoints are these cloud services being accessed by?
Today’s users consume data through channels on many
touchpoints. We consume information on the web, on mobile
devices and tablets, with scanners, and with medical devices,
to name a few. Even our cars, refrigerators, home security
systems, and almost anything with an IP address can interact
with end users in this day and age. Knowing up front what all
of these touchpoints are can drive some important decisions.

AEA Case Study: Mobile Development Decision
Let’s assume AEA plans to allow users to access its auction
site on smart phones and feature phones, tablets, PCs, and
laptops and also publish its APIs so that other website
properties can embed AEA auctions within their sites. A lot
of development is required to support all of those different
touchpoints, browser versions, and third-party websites,
which likely are written in a variety of languages, like .NET,
PHP, Python, and so on. AEA may choose a PaaS solution
specializing in mobile devices and tablets to expedite and
simplify the development process. These platforms are
sometimes referred to as Mobile Backend as a Service
(mBaaS) and focus on allowing the developers to build one
code base that can run seamlessly across multiple device
types and browser versions.

SaaS vendors like Apigee, Mashery, and Layer 7
Technologies provide cloud services for building APIs to

106

publish to third parties. These SaaS tools provide security,
transformation, routing, web and mobile analytics, and many
other important services that allow the developers to focus on
their business requirements. Like the mobile PaaS tools, the
API SaaS tools increase the developers’ speed to market and
reduce maintenance because the vendors take care of
supporting new technologies, standards, and patterns. For
example, if a new device becomes popular or a change is
made to a standard like OAuth, the mobile PaaS and API
SaaS vendors update their products, allowing the developers
to focus on their business needs.

Identify the Project
Constraints (When and with
What)
It is important to understand the budget and the expected
delivery dates. Time may be a critical factor in choosing
cloud service models. If there is a business reason to
implement a new CRM solution in the next month, then
leveraging a SaaS solution is probably the only way to meet
that time constraint. Sometimes dates are artificially assigned.
How many times have we seen projects with a January 1 due
date? Usually there is no business driver for this date other
than somebody is assigned a goal and objective to deliver a
project by year-end. But other times dates are critical to the
business. For example, a business that generates most of its
revenues before the Thanksgiving and Christmas holidays
may have an urgent need to deliver a new product or service

107

or improve the overall system performance before the traffic
peaks. In either case, the date is critical to the business’s
bottom line. Regardless of whether the time constraint is real
or artificial, it is a constraint that must be taken into
consideration when making architecture decisions. Sometimes
what is best for the architecture is not best for the business. It
is critical that all architecture decisions are made with
business goals in mind first and foremost.

There may be other constraints that impact the cloud service
and deployment models. Management or customers may
create artificial constraints. For example, they may dictate,
without performing the proper due diligence, that all public
cloud options are off-limits. Whether that decision is good or
bad, it is a constraint that can be accounted for and the focus
can shift to private cloud and SaaS solutions. A company
might decide it wants to drastically reduce its infrastructure
footprint and reduce the number of its data centers. In this
case, architects should look at public cloud options as well as
SaaS and PaaS options. Another scenario may be that there is
a mandate to use a certain vendor. Whatever the constraints
are, it is important to identify them up front before major
decisions are made.

Understand Current State
Constraints (How)
Organizational readiness is the main theme when asking the
how questions. Does the company have the skills in-house?
Are accounting and finance willing and able to shift from a

108

capital expenditure (buying up front) model to an operational
expenditure (pay-as-you-go) model? What is the mind-set of
the culture? Are they resisisting the change? Are they capable
of change?

Organizational change management is critical to the success
of any transformational change initiative within a company.
Whether a company is trying to implement a new business
strategy, a new development methodology, or adopt new
technologies, there is always the element of organizational
change that must be addressed. In many cases, the change is
more challenging than the new technology or the new strategy
that is being implemented.

People need to understand why change is necessary and how
that change will improve things in the future. John Kotter, the
author of numerous books on organizational change
management, categorized the following eight errors common
to organizational change efforts:

1. Allowing too much complacency
2. Failing to create a powerful guiding coalition
3. Underestimating the importance of a vision
4. Undercommunicating the vision
5. Allowing obstacles to block the vision
6. Failing to create short wins
7. Declaring victory too soon
8. Neglecting to make changes part of corporate culture

A common mistake that I have seen through the years is that
companies often neglect to involve human resources (HR) in
the process. New initiatives often require a change in
behaviors, but if the HR processes still reward the old

109

behaviors and do nothing to encourage the new desired
behaviors, then there are no incentives for employees to
change.

AEA Case Study: Dealing with Change
John Stanford is the vice president of Infrastructure at AEA.
He started at AEA 15 years ago as a systems administrator
and worked his way up to his current position. He has hired
many of the people on his current staff, including the two
security experts that report to him. Many of the people on
John’s team are not supportive of the company’s goal to
leverage the cloud for the new platform. They continue to
raise issues about security, stability, and lack of control that
come with the cloud. John manages the budget for all of the
infrastructure and is already planning for a new project to
expand to another data center in two years because the current
data center is nearing capacity. John is well aware of the costs
and the incredible amount of labor required to build out
another data center. Leveraging the cloud seems to make a lot
of sense to John, but how can he get his people on board?
John starts holding one-on-one meetings with his staff
members to discuss their thoughts on cloud computing. What
he discovers is that many of his staff members are afraid that
their jobs might be going away. When John explains the
business benefits of leveraging the cloud, the staff
immediately shifts focus to building a private cloud regardless
if that deployment model is the best fit for the business. John
realizes he needs to provide a new set of incentives in order to
motivate his staff differently. So John challenges them to
reduce costs of archiving all of the back-office applications
by 50 percent over the next six months. He gives them a
directive to eliminate tape and disk backup and move all

110

backups for these systems to a cloud storage solution. By
giving his staff ownership in the change process and by
giving them a project that directly impacts their day-to-day
job in a positive way, John increases the odds that his team
will adapt over time. Nobody on his team will miss backup
tapes and devices. This is a much better introduction to cloud
computing than having the development team force them into
supporting their cloud aspirations. John changed his staff’s
incentive to drive the desired outcome. He tied the project to a
business objective and made it an achievable goal on their
objectives. Now it is up to John to stay on top of his team and
continue to drive the change forward.

Companies that have a long legacy of building and deploying
on-premises systems are likely to experience resistance within
the ranks. No matter how good the IT team may be when it
comes to building software, without buy-in throughout the
organization, delivering in the cloud will be a challenge.
Don’t forget to address the how question.

Summary
As with implementing any technology, it is highly
recommended to focus first on defining the architecture
before rushing to decisions on vendors and cloud service
models. It is important that the technology decisions are
driven mainly from business drivers rather than technology
preferences. Ask the who, what, why, where, when, and how
questions early in the project so that informed decisions can
be made about cloud service models and deployment models.
Understand the constraints, both artificial and real, up front
before decisions are made. By no way does this

111

recommendation dictate the process in which an organization
answers these questions. On the surface it might sound like I
am recommending a waterfall approach, which I am not.
Agile practitioners can work these discovery tasks into their
sprints in any fashion that they like. The point is that these
discovery questions should be asked and the answers should
have an impact on the design decisions and ultimately the
overall architecture.

References

Kendall, K., and J. Kendall (2003). Systems Analysis and
Design, 6th ed. Upper Saddle River, NJ: Pearson Prentice
Hall.

Kotter, John P. (1996). Leading Change. Boston: Harvard
Business School Press.

Ross, J., P. Weill, and D. Robertson (2006). Enterprise
Architecture as a Strategy: Creating a Foundation for
Business Execution. Boston: Harvard Business School Press.

Ross, J., Weill, P. (2004). IT Governance: How Top
Performers Manage IT Decision Rights for Superior Results.
Boston: Harvard Business School Press.

Schekkerman, Jaap. (2008). Enterprise Architecture Good
Practices Guide: How to Manage the Enterprise Architecture
Practice. Victoria, BC, Canada: Trafford Publishing.

Galexa Consulting. (2013). “BSA Global Cloud Computing
Scorecard: A Blueprint for Economic Opportunity.”

112

Retrieved from http://portal.bsa.org/cloudscorecard2012/
assets/PDFs/BSA_GlobalCloudScorecard.pdf.

Whittaker, Z. (2012, December 4). “Patriot Act Can Obtain
Data in Europe, Researchers Say.” Retrieved from
http://www.cbsnews.com/8301–205_162–57556674/
patriot-act-can-obtain-data-in-europe-researchers-say/.

113

Chapter 5

Choosing the Right Cloud
Service Model
It takes less time to do things right than to explain why you
did it wrong.

—Henry Wadsworth Longfellow, poet

One misperception about cloud computing is that one cloud
service model fits all. That is the equivalent of choosing one
tool to build a house. Obviously, it takes many different tools
to build a house because there are so many different
components that make up the architecture of the house. There
is a concrete foundation; infrastructure items like plumbing,
electrical, and sewage; interior items like walls, floors, and
windows; and external items like roofs, driveways, gutters,
and so on. Each component has its own set of requirements
and therefore requires a different collection of tools.
Obviously, laying and paving the driveway requires much
different tools and processes than installing the plumbing or
tiling the floors. It is a no-brainer that building a house
requires many different skills and many different tools, and
each component of the construction of a house has its own
characteristics within the architecture of the entire house.

114

Building enterprise-grade software in the cloud is no
different. Just as a builder uses many different tools and skills
to build a house, an enterprise should use different cloud
services models within the enterprise. Some companies pick a
single cloud provider like Amazon Web Services (AWS),
which provides Infrastructure as a Service (IaaS) solutions, or
Azure, a provider of Platform as a Service (PaaS) solutions,
and force-fit all solutions into that cloud service model
whether it makes sense to do so or not. This chapter focuses
on explaining what use cases make sense for each cloud
service model. Companies that understand the pros and cons
of each cloud service model will likely implement solutions
on all three.

Considerations When
Choosing a Cloud Service
Model
In Chapter 1, we discussed the definitions of each cloud
service model. Figure 5.1 summarizes each cloud service
model.

Figure 5.1 Cloud Stack

115

There are many factors that go into choosing the right service
model. Decision makers should consider the feasibility of
each cloud service model based on the following five
categories:

1. Technical
2. Financial
3. Strategic
4. Organization
5. Risk

The technical category focuses on areas like performance,
scalability, security, regulation, business continuity, disaster
recovery, and so on. Performance and scalability
requirements are critical for deciding between PaaS and IaaS

116

service models. One of the greatest benefits of PaaS is that
platforms abstract the underlying infrastructure from the
developer so the developer can focus on business
requirements while the platform handles autoscaling. Since
PaaS vendors are responsible for scaling all of their tenants,
they enforce limitations on the amount of resources that can
be requested by a tenant. For most applications, the
limitations are set so high they are not a factor, but for
applications with an extreme number of transactions, PaaS
cannot deliver the performance and scale. Some of the
top-visited websites, like Facebook, Twitter, and Pinterest,
leverage IaaS cloud service models because they cannot rely
on a platform to achieve the scale they must deliver.

Both IaaS and PaaS solutions offer Database as a Service
(DBaaS) solutions that automatically manage database
management tasks like replication, autoscaling, monitoring,
backups, and more. One limitation of DBaaS is the lack of
control over the database. My first start-up, M-Dot Network,
winner of the 2010 AWS Global Start-Up Challenge, had a
unique technical solution for processing digital incentives at
point-of-sale (POS) systems. M-Dot partnered with POS
vendors to build a message broker that was integrated and
shipped with POS software. The message broker sent the
shopping orders and items to M-Dot’s cloud-based digital
incentive platform on AWS. The digital incentive platform
would process the incoming data and determine if shoppers
qualified to redeem any digital offers that were in their digital
wallets. The redemption message was returned to the POS
system in subsecond response time. Anyone familiar with the
retail industry knows that POS systems require extremely
high service level agreements (SLAs) and the worst thing a
third party can do is shut down a retailer’s POS system.

117

M-Dot wanted to leverage Amazon Relational Database
Service (Amazon RDS), Amazon’s DBaaS application
programming interface (API), to take advantage of the
advanced features and automation of database management
tasks. However, the consequences of the database going
off-line were so great that we chose to manage the database
ourselves. This strategy paid off. AWS had a few
well-publicized outages, and in several of those outages, RDS
was either down or impacted. Because M-Dot chose to
manage the database itself, we never missed a POS
transaction on any AWS outage even though many popular
websites were completely down. It came with a cost, though.
We invested a lot of time and money in architecting a
fail-over solution that included master–slave and cross-zone
redundancy.

The financial aspects should focus on total cost of ownership
(TCO), which requires a lot more thought than calculating the
price per hour or per month of a cloud service. If the project is
focused on building new applications, it is much easier to
calculate the TCO, but for projects that are migrating
solutions to the cloud or are new but are constrained by
existing legacy architectures, the TCO is much more complex
to calculate. For the latter, decision makers must estimate the
cost to change and/or integrate with the legacy architectures.
In many cases, moving to the cloud brings costs of retrofitting
existing architectures so that they can be integrated with new
cloud services. On top of the costs to build new services in
the cloud, other costs may include projects to reengineer
legacy architectures, employee training, hiring new
employees or consultants, acquiring tools or services to assist
in reengineering, and much more.

118

Strategic requirements may come into play as well. The more
important speed-to-market is for an initiative, the more likely
the decision makers will look to leverage SaaS or PaaS over
IaaS simply because much of the IT work is being performed
by the cloud service providers, as opposed to an IaaS solution
where IT still does a lot of the heavy lifting. If control is the
most important strategy, it is more likely that the decision
makers will gravitate toward an IaaS solution where IT has
more control over the underlying infrastructure, whereas with
SaaS and PaaS the infrastructure is abstracted from the end
user. Business strategies such as consolidating data centers,
reducing costs, being first to market, handling enormous
scale, selling product globally 24/7, integrating with partner
supply chains, and others all contribute to deciding which
cloud service model to select. Too often companies pick a
cloud vendor solely based on technical preferences without
putting enough weight on the business strategies that are
driving the cloud initiatives.

An assessment of the organization may play a role in what
cloud service model to choose. Does the IT organization have
the skills to build solutions in the cloud? If the company does
not have strong IT skills in the areas of distributed computing,
web development, and service-oriented architectures (SOAs),
maybe it should lean more toward SaaS and PaaS service
models or find a partner that can build cloud services on IaaS.
The lower down the cloud stack the company goes, the higher
the degree of competence the staff needs.

The final category is risk. How much risk is a company
willing to assume? How long can the solution be down? How
damaging is a security breach? Can the government seize the
data in the cloud with a warrant? There are an endless number

119

of questions to consider when it comes to risk. Risk also is a
major determining factor in whether a company chooses to go
with a public cloud, a private, or a hybrid of both. Often,
areas such as privacy, data ownership, and regulation are very
strong factors in the determination of which cloud service
model and which deployment model to use.

Every company and even each individual cloud initiative
within a company may weight each category differently. For
example, a company building a social media site where
customers volunteer to post their personal data, like pictures,
videos, and so on, will likely put a higher weight on the
technical requirements to achieve high scale and uptime and a
lower weight on risks, given that nobody dies when your
favorite social media site goes down. On the flipside, a
medical company responsible for processing medical claims
most likely weights the risk category as high as or even
higher than most of the others. In the following sections we
will discuss use cases for each service model and show some
examples of how AEA addresses its key decision points.

When to Use SaaS
Software as a Service is the most mature of the three cloud
service models. Early pioneers like Salesforce.com have
perfected the execution of delivering complete applications in
the cloud that cloud service consumers can access over the
Internet with a browser. The SaaS providers have total control
over the infrastructure, performance, security, scalability,
privacy, and much more. SaaS vendors typically offer two
ways for their customers to use their applications. The most

120

common method is a web-based user interface that usually is
accessible on any device that can connect to the Internet. The
other way is to provide APIs to their customers so service
consumers can integrate features into their existing
applications or with other SaaS solutions.

A company should use SaaS to outsource all applications,
features, and services that are not a core competency,
assuming it meets its needs and is affordable. For example, if
a company is not in the business of writing HR, payroll,
customer relationship management (CRM), and accounting
software, it should not build these applications. Buying these
applications and running them on-premises is not cost
effective with the emergence of SaaS alternatives. Why buy
the software and servers, manage the servers, and pay people
to manage, patch, secure, and provide other non-value-add
tasks to keep these services running?

SaaS solutions fall into many different categories. The most
popular are enterprise business applications like CRM,
enterprise resource planning (ERP), accounting, human
resources, and payroll. There are a number of IT
infrastructure SaaS solutions that deal with security,
monitoring, logging, testing, and so on. The data category
includes business intelligence, database as a service, data
visualization, dashboards, data mining, and more. The
productivity category includes collaboration tools,
development tools, surveys, e-mail campaign tools, and much
more.

Because SaaS providers cater to many customers they often
do not provide the same level of flexibility that a company
would have if it built its own application. Sometimes

121

companies choose to build their own applications because
there is a feature or a configuration that they want but can’t
find from the SaaS vendors. Before a company decides to
build it itself, it should consider all of the tasks that SaaS
vendors perform on their customers’ behalf and factor them
into the total cost of ownership:

• Vendor is responsible for security updates and
patches.

• Vendor manages all infrastructure and data center.
• Vendor usually provides mobile compatibility for

majority of phones and tablets.
• Vendor provides compatibility across all major

browsers and versions.
• Vendor frequently updates features and updates are

seamless to end user.
• Vendor manages databases, including capacity

planning, backup recovery, and so on.

Before a company decides to write the application itself, it
should compare the value of the feature(s) that the SaaS tools
cannot provide against the TCO of building it itself. Another
part of the equation is to consider the opportunity cost for
shifting the resources to another project or reducing the
number of resources to lower costs. Once a company builds
an application it must pay ongoing to keep it current and fix
bugs. The speed of change in technology is amazingly fast.
Can a company continue to invest precious IT resources
upgrading legacy applications to work on the next new phone
or tablet? When the next social media darling, like Pinterest,
appears out of nowhere, can companies quickly react and
integrate with the API? To stay current with technology,
companies will have to invest a substantial amount of

122

resources to make these upgrades. Every hour spent keeping
up with technology changes is an hour a company is not using
to build the next new product or an hour it is not using to
reduce costs.

AEA Case Study: Use Case for SaaS
Let’s take another look at the business architecture for Acme
eAuction’s future PaaS platform in Figure 5.2.

Figure 5.2 Business Architecture

123

Here are some of the constraints (organized in the five
categories we discussed previously) that Jamie collected in
Chapter 4:
1. Technical. Dynamic traffic loads from third parties,
increase security.
2. Financial. Reduce infrastructure costs.
3. Strategic. Increase revenue via third-party integration.
4. Organizational. Lack of cloud and SOA skills.

124

5. Risk. Must get to market quickly (six months).
As Jamie looks at the constraints on his project, it is obvious
that speed is important. The ROI of the entire initiative is
based on an aggressive time frame. Time is a major constraint
on the architecture. There is a risk of opportunity costs if the
project is late. The team has been asked to reduce the
infrastructure footprint. Another critical constraint is the lack
of skills. Here is Jamie’s assessment of the constraints on the
architecture:
We have very little time to get this high-priority project to
market. We lack the skills at the current time, and we need to
find ways to get to market with less hardware than in the past.
Jamie decides that based on these constraints he needs to
evaluate where within the business architecture he can
leverage SaaS solutions to address the constraints. He knows
from his studies that anything that is not a core competency is
a good candidate for leveraging SaaS solutions. After
reviewing the business architecture, he writes down the
following components as SaaS candidates for his team to
research and validate:
API layer. His team has limited experience writing
Representational State Transfer (RESTful) APIs in the cloud.
They have to support multiple third parties, resulting in the
need to support multiple stacks, manage API traffic
performance, quickly integrate new partners, and so forth. An
API management SaaS tool looks like a good solution.
My cart. There are many shopping cart SaaS solutions
available.
Payments. If they offload payments to a Payment Card
Industry Data Security Standard (PCI DSS)-certified SaaS
solution, the entire platform will not be in scope for PCI DSS
audits. This will save a lot of time and money.

125

Utility services. All of the utility services are candidates for
SaaS because they are not core competencies. However, they
may be provided from a PaaS or IaaS solution, as well.
Enterprise systems. The ERP, financial system, and CRM
systems are perfect candidates for SaaS as they are not core
competencies and there is no added business value for
managing them internally. They are not in the critical path for
the first phase (integrate with third parties), but they may
have a significant contribution to the goal of reducing
infrastructure.

When to Use PaaS
PaaS is the least mature of the three cloud service models.
The first generation of PaaS solutions, like Google,
Force.com, and Microsoft Azure, required that the buyers use
a specific programming language and run on the service
provider’s infrastructure. For start-ups and small businesses
these constraints may have been acceptable, but for
enterprises it is quite a different story. Enterprises are
complex organizations with many different architectures,
technology stacks, and application needs. The lack of
flexibility for both the programming language and the
infrastructure turned off many enterprises and slowed the
adoption of PaaS. Over the past few years a number of
second-generation PaaS service providers have emerged.
These service providers saw an opportunity to address the
enterprise customers’ needs. Many of these new PaaS vendors
now support multiple stacks and some allow the PaaS
software to be deployed on the infrastructure of the service
consumer’s choosing. In addition to the newer PaaS service

126

providers, many of the original PaaS service providers now
support multiple languages like Ruby, PHP, Python, and
Node.js. Cloud Foundry and OpenShift are two open source
projects that are gaining traction and can be deployed on any
infrastructure. One of the advantages of open source
cloud-based solutions is that with commercial vendors, if they
go out of business, the service consumer has no choice but to
quickly move to another platform. With open source the
service consumers have control over the software and stay on
the platform for as long as they wish.

Public PaaS service providers manage the underlying
infrastructure, networks, storage devices, and operating
systems. Tasks like monthly security patching, logging,
monitoring, scaling, fail over, and other system
administration-related tasks are provided by the vendor so the
developers can focus on building cloud-ready applications.

Private PaaS service providers do not provide the abstraction
of the infrastructure services like the public PaaS providers
do. Private PaaS offers the capability to deploy the PaaS
software on both a private and public cloud (hybrid) but at the
sacrifice of requiring the service consumer to manage the
application stack and the infrastructure.

PaaS vendors provide a platform that is shared by many
customers. In order to manage the performance, reliability,
and scalability of each customer and to ensure the heavy loads
from one customer do not impact the performance of another
customer, the PaaS vendors have various limits that they
enforce on developers. These limits, sometimes called
throttling, protect the platform from getting overloaded by an
individual customer, thus protecting all customers in the

127

process. Most PaaS vendors throttle an individual user’s
bandwidth to protect against network collisions and
congestion. Some PaaS vendors throttle CPU utilization to
reduce the amount of heat generation in the data center and to
conserve power. Other PaaS vendors that price based on fixed
amounts of consumption such as blocks of storage will
throttle the customer when the customer has consumed all of
the resources that they have paid for. Developers must
understand the limitations of their selected platform and
design accordingly.

Many PaaS service providers protect their platform and its
customers by throttling the database activity of customers.
Developers must account for this in their designs. One way is
to trap for these types of errors and retry until successful.
Another method is to break units of work into smaller chunks
before calling the database. This trick can be used to design
around bandwidth limitations, as well. For some applications,
designing around throttles creates unacceptable delays in
processing time or it may impact the quality and reliability of
the application. If this is the case, then PaaS may not be the
right service model and IaaS should be used instead. Websites
with extremely high volumes or highly distributed
applications that crunch through enormous amounts of data
are typically poor candidates for PaaS.

But not every application or service has the extreme
processing requirements of a streaming video company like
Netflix or a popular social media website like Twitter. Many
workflow-driven B2B-type applications are prime candidates
for PaaS. In a typical workflow, a product starts with an order
and flows through a repeatable process flow until the product
is built, sold, shipped, and invoiced. Dell uses

128

Salesforce.com’s platform called Force.com to deliver $1
billion in deal registrations with over 100,000 channel
partners, so it is safe to say that PaaS solutions can scale
admirably.

AEA Case Study: Use Case for PaaS
Now that Jamie has identified which components within the
architecture are candidates for SaaS, the remaining
components all require development. He now looks at the
remaining components to determine which components can
leverage a PaaS so that they can get to market quickly without
having to manage infrastructure and the application stack.
Jamie assessed the current web traffic and predicted future
web traffic. Based on these numbers he feels that a PaaS can
support their web traffic for the next two years, but by year
three the load may be too great. Of course, these are just
assumptions because no vendors have been selected yet and
this hypothesis would need to be tested. However, Jamie
needs to balance the short-term goal of getting to market
quickly against the long-term goal of scaling to eBay levels.
Jamie decides to leverage PaaS for seller components because
the seller activity drives much less traffic than buyer activity.
Sellers create content and manage their inventory, while
buyers generate millions of transactions while interacting
with auctions and browsing products. Jamie jots down the
components that are candidates for PaaS:
Seller services. Lower volume, moderate number of
customers.
Mobile touchpoint. The team has very little mobile
experience and is required to develop for many different types
of phones and tablets. A mobile development platform would

129

accelerate the development process and reduce the amount of
overall development.
Social touchpoint. Measuring the impact of the various social
touch-points could be a major project. Leveraging a social
marketing platform eliminates a large amount of work and
provides the team with deep analytics and campaign
management capabilities.
Utility services. The PaaS likely provides services for
security, event triggering, notifications, and APIs to connect
to the popular social sites. One thing to consider, though, is
that the buyer services will be run on an IaaS and will be
leveraging utility services provided on the IaaS platform. The
team will need to perform some due diligence to determine if
they should leverage a single set of utility services from the
IaaS vendor or if they can also use the utility services from
the PaaS vendor.
Jamie determines that if the PaaS and IaaS utility services are
compatible and the user experiences of the buyers and sellers
are the same when it comes to security, notifications, social,
and so forth, then leveraging both PaaS utility services and
IaaS utility services is acceptable. After all, some sellers are
also buyers. If, for whatever reason, the differences of the
IaaS and PaaS utility services create different user
experiences, the applications built on top of PaaS will have to
leverage the underlying IaaS APIs. Keep in mind that Jamie
has not yet determined if they are using public, private, or
hybrid clouds. If they are using public clouds, then this is not
an issue because the public PaaS also is responsible for the
IaaS layer. If they are using a private PaaS, AEA is
responsible for the IaaS layer.

130

When to Use IaaS
If an application or service has performance or scalability
requirements that require the developers to manage memory,
configure database servers and application servers to
maximize throughput, specify how data is distributed across
disk spindles, manipulate the operating system, and so on,
then you should leverage IaaS. If you don’t need to worry
about those things, then you should consider PaaS.

At M-Dot Network we had a requirement to deliver 1 million
transactions per minute from retailer POS systems to the
cloud and back in subsecond response time. In order to
accomplish that feat we could not be throttled by our cloud
vendor, and we had to make tweaks to the operating system,
the application server, and the database to achieve the desired
throughput.

Another factor is cost. PaaS can reduce costs substantially by
reducing the amount of work and the number of resources
required to build and deploy applications. However, the PaaS
pay-as-you-go model can get extremely expensive when data
gets into the tens of terabytes or when the bandwidth or CPU
demands exceed normal levels. As of March 5, 2013, Amazon
has reduced the costs of its EC2 (Elastic Compute Cloud) 26
times, and other IaaS vendors have been following its lead.
As time progresses the cost of IaaS may become so low that
PaaS providers might have to follow suit in order to compete.

Another reason for leveraging IaaS over PaaS is related to
mitigating risks of downtime. When a PaaS provider has an
outage, the customer can only wait for the provider to fix the

131

issue and get the services back online. The same is true for
SaaS solutions. With IaaS, the customer can architect for
failure and build redundant services across multiple physical
or virtual data centers. AWS has had some highly publicized
outages in recent years and major websites like Reddit,
Foursquare, and others were down. But many other sites
survived the outage due to cross-zone redundancy. Most
times when AWS has an outage, PaaS provider Heroku,
which runs its services on top of AWS, is impacted. Heroku
customers are out of luck until both AWS and Heroku
recover. Many AWS customers can and have survived an
AWS outage.

As we move up the stack toward SaaS we increase speed to
market, reduce the number of human resources required, and
reduce operational costs. As we move down the stack toward
IaaS, we get more control of the infrastructure and have a
better chance of avoiding or recovering from a vendor outage.

AEA Case Study: Use Case for IaaS
All remaining components are candidates for IaaS. Jamie has
determined that the future transaction count is too high for
PaaS, and he believes he can still meet the date even though it
will take more work leveraging IaaS. Here is his list of
components that will run on IaaS.
Buyer services. High volume, millions of customers.
Business process. The workflow will be built on IaaS but will
call out to services that handle the payments (SaaS) and pay
sellers (integration with bank).
Utility services. Leverage the IaaS utility services.
Common business services. These are high-volume services
shared by both the buyers and sellers.

132

AEA Case Study: Cloud Deployment Models
The next thing for Jamie to research is what cloud
deployment model makes sense for AEA. After meeting with
the product manager and other business and IT stakeholders,
Jamie wrote down the following notes about deployment
models:

• PCI DSS is out of scope due to selecting SaaS vendor
for payments and leveraging a bank for transferring
funds to sellers.

• Limited amount of PII (personal identifiable
information) data, and users accept terms and
conditions when they register.

• Sellers may be located outside of the United States
and have concerns with data in the public cloud.

• Risk of public PaaS and IaaS outages.
• Need to reduce infrastructure footprint.
• Need to get to market fast.

Most of these constraints point to using a public cloud. Since
this platform does not require heavy regulation and speed to
market is urgent, the public cloud option is very attractive.
One concern that Jamie has is the public cloud might scare
away international third parties. Another concern Jamie has is
how to deal with cloud service provider outages. He knows
from his research that if he leverages a public IaaS provider
like AWS, he can maintain uptime when AWS has outages,
but it requires significant investments in redundancy and fail
over. He also knows that if the public PaaS has an outage, he
is at the mercy of the provider until it recovers. However, if
the PaaS goes down, only the seller services are impacted, not
the auctions. The only impact is that new products can’t be
listed, but sales will be able to continue. Jamie accepts that
risk for the time being.

133

Long term, Jamie decides that a hybrid cloud solution makes
the best sense. With a hybrid solution, Jamie can keep all
critical data on-premises and attract more international
partners. He can have the baseline workloads running
on-premises and leverage the public cloud for spikes in
traffic. In addition, the public and private cloud can provide
fail over for each other. He can leverage a hybrid PaaS that
can run on both the private and public cloud.
However, Jamie has a short-term fixed date that is very
aggressive. Building private cloud solutions is much more
involved than public cloud solutions. It also does not help
meet the goal of reducing the infrastructure footprint. Jamie
builds a roadmap that shows a public-cloud-only option in the
first six months. The public cloud solution will have to
include redundancy across virtual data centers. In order to
justify adding servers for the private cloud that he targets year
two to deliver, he also recommends moving the CRM and
ERP systems to SaaS solutions, which will reduce a large
amount of infrastructure costs in both hardware and licensing.
Jamie’s decisions are unique to his company. His decisions
were impacted by the business case, the time constraints, his
organization’s readiness, and his personal knowledge and
experience of his industry and his customers. There are no
right or wrong choices here. Jamie could have chosen to do
the entire solution in a private cloud or entirely on public
PaaS and would likely be successful. But he weighed in on
the constraints and made the best decisions he could based on
the information he had.

134

Common Cloud Use Cases
For start-ups and greenfield applications, it is common that
entire applications are built in the cloud. For established
enterprises, it is more realistic that only certain components
within an architecture are deployed in the cloud. Here are
some common use cases where today’s enterprises are
leveraging the cloud to supplement their existing
architectures.

Cloud Bursting

Many organizations choose to leverage the cloud to handle
peaks in traffic. They may have applications running in their
data centers and choose to send excess capacity out to a cloud
service provider instead of investing in physical infrastructure
to accommodate peaks. Retailers that deal with seasonal
spikes around the holidays or companies that process tax
returns that have low traffic for most of the year but
experience huge peaks during the tax season are examples of
companies that might take advantage of cloud bursting.

Archiving/Storage

Some organizations are finding innovative ways to reduce
archiving and storage costs by leveraging storage in the cloud.
Traditional archiving strategies involve several pieces of
infrastructure and software such as backup tape and disk
devices, various types of storage media, transportation
services, and much more. Now companies can eliminate all of
those physical components and leverage cloud storage

135

services that can be totally automated through scripts. The
cost of storage in the cloud is drastically cheaper than storage
on physical storage media and the processes for data retrieval
can be much less complex.

Data Mining and Analytics

The cloud is a great place for processing large amounts of
data on-demand. As disks gets cheaper, organizations are
storing more data now than ever before. It is not uncommon
for companies to be storing many terabytes or even petabytes
of information. Analyzing large amounts of data like this can
become very challenging on-premises because an
extraordinary amount of infrastructure is required to process
all of that data. To make matters worse, the analytics of these
large data sets are usually ad hoc in nature, which means
often the infrastructure is sitting idle until someone initiates a
request.

Moving these types of big data workloads to a public cloud is
much more economical. In the public cloud, resources can be
provisioned only when a request is initiated. There is a huge
cost savings both in physical infrastructure and in the
management of the systems by deploying an on-demand
cloud model.

Test Environments

Many companies are looking to the cloud for provisioning
test and development environments and other nonproduction
environments. In the past, IT has had to maintain numerous
test and development environments on-premises, which

136

required constant patching and maintenance. In many cases,
those environments sit idle outside of normal working hours
when workers are not working. Another issue is that a limited
number of environments are usually available to testers and
developers, and they often have to share environments with
other teams and environments, which can make testing and
development a challenge.

To solve that problem, many companies are creating
processes for testers and developers to self-provision testing
and development environments on-demand in the cloud. This
method requires less work for the administrators, provides
speed to market for the testers and developers, and can reduce
costs if the environments are shut down when not in use.
Better performance testing can be accomplished in the cloud
because testers can provision a large amount of resources to
simulate large peaks in traffic, where in the on-premises
model they were restricted to the amount of physical
hardware that was in the data center.

There are many more use cases for cloud computing. The
point here is that building services in the cloud is not an
all-or-nothing proposition. It is perfectly acceptable and very
common for enterprises to have a mixture of solutions within
their architectures deployed within their data centers and in
one-to-many clouds.

Summary
Choosing cloud service models and deployment models are
critical tasks in any cloud computing initiative. The decisions

137

should be based on business drivers, constraints, and
customer impacts. Before making these decisions it is highly
recommended that the six architecture questions discussed in
Chapter 4 are answered. It is also important that all
components of the business architecture are considered before
making these decisions. An understanding of the future state
is also important. As we saw from Jamie’s decision, he built a
roadmap that arrives at a long-term future state of a hybrid
cloud, which is much different from the initial deliverable,
which is a public cloud option. Since he knows that his future
state is a hybrid cloud solution, he knows that a hybrid PaaS
makes sense in his first deliverable. If he did not look out to
the future, he likely would have chosen a public PaaS. When
the time came to move to a hybrid solution he would have
been constrained by the public PaaS decision. The moral of
this story is to take time up front to understand the context of
the entire business problem over time, not just the immediate
need.

References

Kaplan, J. (2005). Strategic IT Portfolio Management:
Governing Enterprise Transformation. PRTM, Inc.

Handler, R., and B. Maizlish (2005). IT Portfolio
Management: Unlocking the Business Value of Technology.
Hoboken, NJ: John Wiley & Sons.

Hurwitz, J., M. Kaufman, F. Halper, and D. Kirsch (2012).
Hybrid Cloud for Dummies. Hoboken, NJ: John Wiley &
Sons.

138

Lee, J. (2013, March 5). “Amazon Web Services Drops Prices
Again to Compete with Microsoft, Google.” Retrieved from
http://www.thewhir.com/web-hosting-news/
amazon-web-services-drops-price-of-ec2-again-to-compete-with-microsoft-google.

139

Chapter 6

The Key to the Cloud

Restful Services
Life is a distributed object system. However, communication
among humans is a distributed hypermedia system, where the
mind’s intellect, voice+gestures, eyes+ears, and imagination
are all components.

—Roy T. Fielding, inventor of REST

There are many reasons that Representational State Transfer
(RESTful) services are a critical component of any cloud
solution. First, when building services in the cloud one
typically builds on top of an Infrastructure as a Service (IaaS)
or Platform as a Service (PaaS) provider or integrates with
one-to-many Software as a Service (SaaS) offerings. All of
these cloud service providers have exposed their application
programming interfaces (APIs) using RESTful services. In
addition, clouds are heterogeneous ecosystems that connect
many different services from many different companies
written in many different technology stacks. The complexities
of the underlying stacks and protocols should be abstracted
away from the business logic so this ecosystem of services
can easily connect and work in harmony.

140

A great example of this concept in practice is how simply we
can plug in social media functionality from Facebook,
Twitter, Pinterest, and other social media touchpoints.
Underneath those widely used APIs are some very diverse
and complex systems. These high-scale systems combine
multiple programming stacks, multiple database technologies,
and technologies for integration, caching, queuing, event
processing, and much more. The beauty of services is that all
of that complexity is hidden from us as developers and
literally within minutes we can connect our applications and
services and leverage all of that wonderful, complex
functionality with no knowledge of how the underlying
technologies work. That is agility at its finest.

A second reason that RESTful services are a critical
component of any cloud solution pertains to the many
touchpoints that users consume information on in today’s day
and age. Gone are the days of building separate systems for
individual touchpoints. Today, the preferred method is to
build multiple user interfaces (web, mobile, tablet, etc.) that
leverage the same services and are always in sync. We have
to build things this way because our users are bouncing
around between devices and browsers and will leave in
droves if each touchpoint displays different result sets. To
make things even easier, there are a few new companies that
are delivering mobile platforms so that developers can build a
single user interface (UI), and the platforms will transform the
code into the various mobile and tablet user interfaces. Did I
mention agility?

Third, and most important, cloud infrastructure is virtual and
dynamic, meaning resources come and go in an elastic matter
and every piece of cloud infrastructure is expected to fail. The

141

cloud is designed to be fault-tolerant so that if any node fails,
the system can continue its operations either in a degraded
mode or without any degradation if other nodes become
available to replace the failed node. To take advantage of
fault-tolerant cloud infrastructure, software must be built to
be fault-tolerant as well. To accomplish fault tolerance with
software, the software must not be tightly coupled to the
infrastructure. A key best practice to writing loosely coupled
software in the cloud is to store the application state on the
client instead of the server, thus breaking the dependencies
between the hardware and the software. This concept is a core
principle for building RESTful web services.

This chapter will discuss why REST is so important when
building cloud architectures. Migrating legacy applications to
the cloud can be a challenge. We will discuss what those
challenges are and how to deal with them.

Why REST?
Before going much further, this is a good time to discuss
REST in more detail. Dr. Roy Fielding, the creator of the
architectural approach called REST, looked at how the
Internet, a highly distributed network of independent
resources, worked collectively with no knowledge of any
resource located on any server. Fielding applied those same
concepts to REST by declaring the following four major
constraints.

1. Separation of resource from representation. Resources and
representations must be loosely coupled. For example, a

142

resource may be a data store or a chunk of code, while the
representation might be an XML or JSON result set or an
HTML page.
2. Manipulation of resources by representations. A
representation of a resource with any metadata attached
provides sufficient information to modify or delete the
resource on the server, provided the client has permission to
do so.
3. Self-descriptive messages. Each message provides enough
information to describe how to process the message. For
example, the “Accept application/xml” command tells the
parser to expect XML as the format of the message.
4. Hypermedia as the engine of application state
(HATEOAS). The client interacts with applications only
through hypermedia (e.g., hyperlinks). The representations
reflect the current state of the hypermedia applications.

Let’s look at these constraints one at a time. By separating the
resource from its representation, we can scale the different
components of a service independently. For example, if the
resource is a photo, a video, or some other file, it may be
distributed across a content delivery network (CDN), which
replicates data across a high-performance distributed network
for speed and reliability. The representation of that resource
may be an XML message or an HTML page that tells the
application what resource to retrieve. The HTML pages may
be executed on a web server farm across many servers in
multiple zones in Amazon’s public cloud—Amazon Web
Services (AWS)—even though the resource (let’s say it is a
video) is hosted by a third-party content delivery network
(CDN) vendor like AT&T. This arrangement would not be
possible if both the resource and the representation did not
adhere to the constraint.

143

The next constraint, manipulation of resources by
representations, basically says that resource data (let’s say it
is a customer row in a MySQL table) can only be modified or
deleted on the database server if the client sending the
representation (let’s say it is an XML file) has enough
information (PUT, POST, DELETE) and has permission to do
so (meaning that the user specified in the XML message has
the appropriate database permissions). Another way to say
that is the representation should have everything it needs to
request a change to a resource provider assuming the
requester has the appropriate credentials.

The third constraint simply says that the messages must
contain information that describes how to parse the data. For
example, Twitter has an extensive library of APIs that are free
for the public to use. Since the end users are unknown entities
to the architects at Twitter, they have to support many
different ways for users to retrieve data. They support both
XML and JSON as output formats for their services.
Consumers of their services must describe in their requests
which format their incoming messages are in so that Twitter
knows which parser to use to read the incoming messages.
Without this constraint, Twitter would have to write a new
version of each service for every different format that its users
might request. With this constraint in place, Twitter can
simply add parsers as needed and can maintain a single
version of its services.

The fourth and most important constraint is HATEOAS. This
is how RESTful services work without maintaining
application state on the server side. By leveraging hypermedia
as the engine of application state (HATEOAS), the
application state is represented by a series of links—uniform

144

resource identifiers or URIs—on the client side, much like
following the site map of a website by following the URLs.
When a resource (i.e., server or connection) fails, the resource
that resumes working on the services starts with the URI of
the failed resource (the application state) and resumes
processing.

A good analogy of HATEOAS is the way a GPS works in a
car. Punch in a final destination on the GPS and the
application returns a list of directions. You start driving by
following these directions. The voice on the GPS tells you to
turn when the next instruction is due. Let’s say you pull over
for lunch and shut off the car. When you resume driving, the
remaining directions in the trip list pick right up where they
left off. This is exactly how REST works via hypermedia. A
node failing is similar to shutting your car off for lunch and
another node picking up where the failed node left off is
similar to restarting the car and the GPS. Make sense?

Why are the four constraints of REST so important when
building solutions in the cloud? The cloud, like the Internet, is
a massive network of independent resources that are designed
to be fault-tolerant. By following the constraints of REST, the
software components that run in the cloud have no
dependencies on the underlying infrastructure that may fail at
any time. If these four constraints are not followed, it creates
limitations on the application’s ability to scale and to fail over
to the next available resource.

As with any architectural constraint, there are trade-offs. The
more abstraction that is built into an architecture, the more
flexible and agile the architecture will be, but it comes with a
price. Building RESTful services correctly takes more

145

up-front time because building loosely coupled services is a
much more involved design process. Another trade-off is
performance. Abstraction creates overhead, which can impact
performance. There may be some use cases where the
performance requirements far exceed the benefits of REST
and, for that particular use case, another method may be
required. There are other design issues to be aware of that are
covered in the next section.

The Challenges of Migrating
Legacy Systems to the Cloud
One of the challenges companies have when they decide to
port applications from on-premises to the cloud is that many
of their legacy systems are reliant on ACID transactions.
ACID (atomicity, consistency, isolation, durability)
transactions are used to ensure that a transaction is complete
and consistent. With ACID transactions, a transaction is not
complete until it is committed and the data is up to date. In an
on-premises environment where data may be tied to a single
partition, forcing consistency is perfectly acceptable and often
the preferred method. In the cloud, there is quite a different
story.

Cloud architectures rely on Basically Available, Soft State,
Eventually Consistent (BASE) transactions. BASE
transactions acknowledge that resources can fail and the data
will eventually become consistent. BASE is often used in
volatile environments where nodes may fail or systems need
to work whether the user is connected to a network or not.

146

This is extremely important as we move into the world of
mobile, where connectivity is spotty at times.

Getting back to the legacy system discussion, legacy systems
often rely on ACID transactions, which are designed to run in
a single partition and expect the data to be consistent.
Cloud-based architectures require partition tolerance,
meaning if one instance of a compute resource cannot
complete the task, another instance is called on to finish the
job. Eventually the discrepancies will be reconciled and life
will go on its merry way. However, if a legacy system with
ACID transactionality is ported and not modified to deal with
partition tolerance, users of the system will not get the data
consistency they are accustomed to and they will challenge
the quality of the system. Architects will have to account for
reconciling inconsistencies, which is nothing new. In retail
they call that balancing the till, which is an old way of saying
making sure the cash in the drawer matches the receipt tape at
the end of the day. But many legacy applications were not
designed to deal with eventual consistency and will frustrate
the end users if they are simply ported to the cloud without
addressing this issue.

What about those mega-vendors out there whose legacy
applications are now cloud-aware applications? Most of those
rebranded dinosaurs are actually running in a single partition
and don’t really provide the characteristics of cloud-based
systems such as rapid elasticity and resource pooling. Instead,
many of them are simply large, monolithic legacy systems
running on a virtual machine at a hosted facility, a far cry
from being a true cloud application. It is critical that
architects dig under the covers of these vendor solutions and
make sure that they are not being sold snake oil.

147

There is a new breed of vendors that offer cloud migration
services. It is important to note that these solutions are simply
porting the legacy architecture as is. What that means is that if
the legacy applications can only run in a single tenant, they
will not be able to take advantage of the elasticity that the
cloud offers. For some applications, there may be no real
benefit for porting them to the cloud.

Summary
Architecting solutions for cloud computing requires a solid
understanding of how the cloud works. To build resilient
solutions that scale, one must design a solution with the
expectation that everything can and will fail. Cloud
infrastructure is designed for high availability and is partition
tolerant in nature. Migrating single-partition applications to
the cloud makes the migration act more like a hosting solution
rather than a scalable cloud solution. Building stateless,
loosely coupled, RESTful services is the secret to thriving in
this highly available, eventually consistent world. Architects
must embrace this method of building software to take
advantage of the elasticity that the cloud provides.

References

Bloomberg, J. (2013). The Agile Architecture Revolution:
How Cloud Computing, REST-Based SOA, and Mobile
Computing Are Changing Enterprise IT. Hoboken, NJ: John
Wiley & Sons.

148

Bloomberg, J. (2011, June 1). “BASE Jumping in the Cloud:
Rethink Data Consistency.” Retrieved from
http://www.zapthink.com/2011/06/01/
base-jumping-in-the-cloud-rethinking-data-consistency/.

Fielding, R. (2000). “Representational State Transfer
(REST),” in “Architectural Styles and the Design of
Network-based Software Architectures.” Ph.D. Dissertation,
University of California, Irvine. Retrieved from
http://www.ics.uci.edu/~fielding/pubs/dissertation/
rest_arch_style.htm.

Hoff, T. (2013, May 1). “Myth: Eric Brewer on Why Banks
Are BASE Not ACID—Availability Is Revenue.” Retrieved
from http://highscalability.com/blog/2013/5/1/
myth-eric-brewer-on-why-banks-are-base-not-acid-availability.html.

149

Chapter 7

Auditing in the Cloud
Two thirds of the earth’s surface is covered with water, the
other third is covered with auditors from headquarters.

—Norman R. Augustine

Historically, data has been stored behind corporate firewalls
in the control of the company that owns the data. It was up to
the company to secure the perimeter, harden the
infrastructure, and secure the databases. Auditors could come
on-site and inspect the processes and controls to make their
assessments. If any government agency wanted to seize any
data for an investigation, it had to confront the company
before doing so. The bottom line was the company that
owned the data was in control. That is not the same as saying
the data was secure, but responsibility for securing the data
was owned by the company.

Storing the data in the cloud is a different story. Now the
company has a shared responsibility with the cloud service
provider (CSP) and the further up the cloud stack they go, the
more responsibility the CSP takes on. In some respects this is
a good thing. Why not let the CSP, whose core competencies
include security and compliance, handle some of the heavy
lifting around securing and encrypting data, hardening the
environment, managing backup and recovery processes, and

150

various other infrastructure-related tasks? Off-loading
security and compliance to a CSP does not mean that the
company is no longer accountable. It simply means the CSP
provides secure and compliant cloud services, but it is still up
to the company to secure the overall application. When
security and compliance are shared responsibilities, auditing
the entire solution becomes a more complex situation. Now
auditing must occur across multiple entities: cloud service
consumer and cloud services provider(s).

This chapter will discuss the cloud security, what auditors
look for in cloud applications, briefly review common
regulations, and then cover various design strategies for
auditing cloud services.

Data and Cloud Security
Study after study and poll after poll consistently point to
security in the cloud as the number-one concern of both
business and IT people. Some of these concerns are valid but
some are based on assumptions and fear. IT people are used
to being in control of their data and systems. Letting someone
else manage critical data is a foreign concept to many, and the
immediate reaction is to assume that if it is out of our control,
it cannot be as secure. A recent study by Alert Logic in the
spring of 2013 came to the following conclusions.

• The cloud is not inherently less safe than enterprise
data centers.

151

• Attacks in CSP environments tend to be crimes of
opportunity, while those in enterprise data centers
tend to be more targeted and sophisticated.

• Web applications are equally threatened in cloud and
enterprise data centers.

What this means is that it doesn’t matter where the data
resides—the threats are the same. What was more interesting
in the study was that the success rate of penetrations from
outside threats was much higher in enterprise data centers
than in CSP environments. This should not be much of a
surprise since security is a core competency of CSPs. Without
world-class security, many would not be in business today.
Many corporations do not have the resources and expertise to
build a world-class secure data center.

Based on this information, skeptical architects and product
managers need to dismiss the notion that data cannot be
secure in the cloud and focus on the real issues and
constraints around auditing, laws and compliance issues,
customer requirements, and risks.

Auditing Cloud Applications
Auditors are responsible for validating that their clients
adequately address a collection of controls and processes in
order to receive a stamp of approval for satisfying the
requirements of a given set of constraints as defined by a
governing set of laws. There are many different regulations
that exist today. In order for a company to determine which
regulations apply to it, the company must have a firm
understanding of its industry’s standards, business processes,

152

and data requirements. When dealing with IT systems,
auditors validate the process and controls in the following
areas (when necessary):

• Physical environment. Perimeter security, data center
controls, and so on.

• Systems and applications. Security and controls of
network, databases, software, and the like.

• Software development life cycle (SDLC).
Deployments, change management, and so forth.

• Personnel. Background checks, drug testing, security
clearance, and more.

Before cloud computing, an auditor could sit down with a
client and map personnel and physical infrastructure to the
different controls and processes that were to be audited.
Auditors had access to physical data centers whether they
were located at a client’s property or at a third-party facility.
In either case, the auditors could point to a physical machine
and inspect the physical security of the data center. In the
cloud, this is not the case. Now, certain controls and
processes map to a CSP instead of to an individual. When that
occurs, the auditor must rely on the auditing information
produced by that CSP, hence the reason why compliance is
such a high priority in the cloud. Without proof of
compliance, a CSP could cause a customer to fail its audit.
This is one major reason why some companies prefer to build
private clouds. They want to be in total control of the data, the
processes, and the controls and not rely on another entity
when it comes to security, privacy, and regulation. The irony
of that decision is that in many cases, it would be easier and
more cost effective to rely on CSPs if certain functions of the
application were managed by certified CSPs.

153

A public Infrastructure as a Service (IaaS) environment is a
multitenant environment, meaning multiple customers share
compute resources. The IaaS provider will not allow an
auditor of one of its tenants to access the infrastructure
because it has an obligation to protect the rights of all of the
other tenants. The IaaS provider will have its own auditors
audit its perimeter security, processes, and controls, but no
tenant’s auditor will be able to physically access the actual
infrastructure (the tenant has no idea what infrastructure it is
running on, anyway). Auditors will be forced to inspect the
white papers and published audit reports that the IaaS
providers produce and will have no access to public IaaS data
centers. For private IaaS data centers, auditors may have
access to inspect the actual infrastructure to access the
physical perimeter security unless the private cloud is hosted
by a CSP.

With Platform as a Service (PaaS) CSPs, the physical aspects
of auditing are even more complex. Not only is the
infrastructure abstracted and managed by the CSP, the
application stack is, too. Tasks like monthly patching, locking
down the operating system, intrusion detecting, and others are
all managed by the CSP. In some instances, even the database
is controlled and managed by the CSP, and the customer only
controls the database access and administration of users. Even
more responsibility is outsourced to the CSP with Software as
a Service (SaaS) applications. In addition to being responsible
for the infrastructure and application stack, SaaS providers
also have responsibility for the entire application. Consumers
of SaaS solutions have very limited responsibilities in this
case. In Chapter 9, “Security Design in the Cloud,” we will
discuss this in great detail.

154

Why is all of this important? There are a number of
regulations that must be adhered to if a company wishes to
operate certain business processes in the cloud. Many
customers will not do business with a company that offers
cloud services that are not in compliance with various
regulations. For example, a U.S.-based company offering
cloud-based services for automating health records processing
on behalf of health care providers will have a very hard time
finding a customer if it is not HIPAA compliant. HIPAA is
the Health Insurance Portability and Accountability Act put in
place by the United States federal government that requires
health care providers to apply appropriate levels of
administrative, technical, and physical controls to ensure the
privacy of consumers’ protected health information (PHI).
Health care providers are very unlikely to engage with a CSP
that is not HIPAA compliant because by doing so, the health
care provider may fall out of compliance, which could lead to
unpleasant consequences for its business, such as fines, legal
issues, lost business, and bad publicity.

It is important that architects and product managers
understand who is responsible for the data within each service
model and how that responsibility is accessed in the audit
process so the appropriate processes and controls can be put
in place. It is equally important to understand when certain
regulatory requirements are in scope, which leads us to our
next section.

155

Regulations in the Cloud
There are a number of regulations that apply to systems being
built in the cloud. Some are industry specific, some are
specific to the type of data and transactions that are being
processed, and others are standards for any cloud-based
system. For companies building software in the cloud, there
are two parties that have a responsibility to adhere to
compliance: the CSP and the company building the
applications. The fact that a company like Amazon Web
Services (AWS) is certified for the ISO 27001 standard does
not make the applications built on top of AWS compliant. It
simply means the infrastructure layer can pass the audit. The
company building and managing the application stack and
application layer has to have all of the proper controls in
place to ensure that the entire application can pass the audit.
Table 7.1 offers a list of some of the regulations that can
come into play when building cloud services.

Table 7.1 Regulations and Controls

Audit Category Description

ISO27001 Software International standards for
computer system

SSAE-16 Security Controls for finance, security, and
privacy

Directive
95/46/ec Security European security and privacy

controls
Directive
2002/58/ec Security European e-privacy controls

156

Audit Category Description

SOX Financial U.S. public company financial
accountability controls

PCI DSS Credit Card Security and privacy of credit card
information

HIPAA Health Security and privacy of health care
information

FedRAMP Security U.S. government security standards
for cloud computing

FIPS Software U.S. government standard for
computer systems

FERPA Education Security and privacy of education
information

To pass audits pertaining to software best practices, security,
and privacy, a company must have controls and processes in
place in the following categories:

• Incident management
• Change management
• Release management
• Configuration management
• Service level agreements
• Availability management
• Capacity planning
• Business continuity
• Disaster recovery
• Access management
• Governance
• Data management
• Security management

157

This is another reason the myth that cloud solutions are not
secure is completely false. In order to become certified for the
standard regulations for cloud computing, a company must
pass audits by implementing approved processes and controls
in all of these categories. Many on-premises solutions were
never held to that same standard. We will discuss some of
these categories in detail later in the book.

There are many more regulations that can fall into scope.
Each country may have its own laws that must be adhered to,
as well. The type of application and the customer base have a
lot to do with the regulations that apply. For example, many
social media sites do not feel the need to invest in passing
various audits. Most simply post terms and conditions of what
the company’s responsibilities are and the user accepts them
as is in return for using the services. For business-to-business
(B2B) companies, adherence to regulations is much stricter.
Customers of CSPs that are corporations have much greater
responsibility and requirements than individual consumers.
For example, an individual using a cloud service like Twitter
can choose to opt in and assume the risks as defined in the
terms of services or she can choose to not enroll. If an
individual opts in, she relies on Twitter to uphold its part of
the agreement by keeping her data secure and private. If
Twitter fails to do so, there is not much an individual can do
other than choose to close her account.

Now let’s look at Chatter, a Twitter-like cloud service for
social collaboration within the enterprise. Even though
Twitter and Chatter are conceptually very similar services, the
risk of a breach of Chatter data is exponentially more serious
than Twitter data. The reason is because Chatter is used
internally for business discussions and to connect with

158

customers and suppliers. The information shared using this
technology is not for public knowledge. A breach could
expose a company’s secrets, upset customers and partners,
and create a public relations nightmare for the company.
Salesforce.com, the company that sells Chatter services, must
comply with numerous regulations in order to gain the
confidence of businesses if they are to become paying
customers.

Here is what decision makers need to know when it comes to
regulations. For Infrastructure as a Service (IaaS) and PaaS
CSPs, gaining certifications for numerous regulations is a key
to customer acquisition. Minimally, a CSP should be certified
in ISO 27001 and SSAE-16 SOC1 and SOC2. If the provider
expects to have health care customers, it should get certified
in HIPAA. PCI compliance is critical if the CSP expects any
type of application that accepts payments to be run on its
infrastructure. There are a variety of government regulations
like Federal Information Processing Standards (FIPS) and the
Federal Risk and Authorization Management Program
(FedRAMP) in the United States that certain government
agencies require CSPs to comply with. Often, companies and
government agencies leverage private cloud IaaS and PaaS
solutions to get around the lack of certifications in the public
cloud space. In these cases, the risks far outweigh the benefits
of elasticity and resource pooling that are sacrificed when
cloud services are performed in a private cloud setting.
Recently, public IaaS providers have been getting certified in
federal regulations in an attempt to attract business from
government agencies. AWS has launched a dedicated region
called GovCloud that meets the regulatory requirements of
the government and isolates the government applications
installed in that region from the rest of AWS’s customers.

159

This is a semiprivate community cloud running on a public
IaaS only for certain government agencies.

For SaaS CSPs, privacy is a key issue because all of the data
management is the responsibility of the service provider.
Most SaaS contracts have a software escrow provision to
account for what happens to the data if the solution is
unavailable for a long period of time or if the company goes
out of business. The software is deposited in a third-party
agent’s escrow account and turned over to the consumer of
the SaaS solution if the CSP declares bankruptcy or fails to
meet the contractual obligations. CSPs that transfer data
across international boundaries must meet the regulatory
requirements of the safe harbor law. EU safe harbor law
prohibits the transfer of personal information to and from
European Union (EU) countries to non-European companies
that do not meet the EU standards for privacy. Any SaaS
provider hoping to sell to EU countries or customers that
integrate with EU customers will have to adhere to EU
regulations as well as many of the regulations just listed. The
good news is that there is a great deal of overlap in these
regulations. The combination of ISO 27001 and PCI
regulations are a superset of a majority of the remaining
regulatory requirements. Some auditors even have the
capability to combine the auditing efforts into a single
engagement so that they can audit all of the processes and
controls in one pass and produce multiple audit reports, thus
reducing the overall cost and time to complete the audits.

160

Audit Design Strategies
The first step of an audit design strategy for a new cloud
application is to identify all of the regulations that apply
based on the requirements from customers and the industry.
Most cloud services targeting business customers will be
required to be compliant with an IT best practices regulation
like the ISO 27001 standard and a security regulation such as
the SSAE-16, SOC 2 regulation. Other factors that dictate
additional regulations are:

• Industry requirements (health care, government,
education, etc.)

• Data types (payments, personal identifiable
information, etc.)

• Location (country, transmission across country
boundaries, etc.)

Once the team has established the list of regulations that it
must adhere to, the next step is to create a work stream in the
product roadmap dedicated to auditing. This work stream
should be made up of the following strategies:

• Data management (Chapter 8)
• Security management (Chapter 9)
• Centralized logging (Chapter 10)
• SLA management (Chapter 11)
• Monitoring (Chapter 12)
• Disaster recovery (Chapter 13)
• SDLC and automation (Chapter 14)
• Operations and support (Chapter 14)
• Organizational change management (Chapter 15)

161

A key takeaway here is that the product has to evolve over
time. There is much to do within each strategy before
attempting to pass an audit. A wise strategy would be to take
an enterprise view for each of these strategies, so subsequent
applications can leverage the initial investment, and future
cloud applications can be implemented in a consistent manner
reducing maintenance costs and improving auditability.
Addressing auditing requirements after applications are built
is a very expensive undertaking and often results in process
and control gaps. When auditing requirements are considered
early in the development, processes and controls can be
designed to be part of the core application, thus making
reducing risks, improving auditability, and reducing auditing
costs easier.

The amount of development required to build a system that
can pass audits is greatly impacted by the cloud service model
that a cloud service consumer chooses. When building on top
of IaaS, a large amount of the responsibility falls on the cloud
service consumer. If the consumer chooses to build its own
private cloud on its own premises, the consumer has total
responsibility to build in all of the necessary processes and
controls. Leveraging a public IaaS or a hosted private IaaS
provider off-loads the responsibility for the infrastructure
layer to the CSP. Obviously, as we move up the stack to PaaS
and SaaS, more responsibility shifts to the CSPs, but the
consumer still needs some level of process and controls in
each area.

Another key factor of an auditing strategy is the maturity of
the consumer. If the consumer is a start-up, it is likely that
getting to market quickly is far more important than passing
audits. In fact, there is no use putting all of the effort into

162

auditing until the start-up can validate that there is a sufficient
demand for its products and services. That is not to say that
start-ups should ignore auditing requirements altogether.
They should be able to at least answer to customers regarding
how they plan on addressing auditing requirements. A
well-established company that sells into fortune 500
companies will likely be required to pass the audits prior to
launching its products and services.

One of the best examples of implementing an auditing and
compliance roadmap is Amazon and its AWS product.
Amazon first launched its S3 and EC2 web services to the
public in 2006. It wasn’t until 2010 that AWS announced it
was compliant with ISO 27001 and PCI DSS. In 2011, it
announced the publication of the SSAE-16 SOC 1 report. In
2013, it published the SSAE-16 SOC 2 and SOC 3 reports
and achieved FedRAMP compliance. This compliance
roadmap was driven by customer demand. When AWS first
launched and for the following two to three years, it was
primarily used by start-ups, web applications, and for ad hoc
applications. In order to attract more mainstream customers,
Amazon targeted the ISO 27001 standard. Once it was
certified for ISO 27001, the feedback the company received
was that security in the cloud was a major concern and
processing credit card transactions in the cloud was perceived
as impossible due to the lack of AWS’s PCI DSS
certification. Amazon addressed those gaps and then saw
huge opportunities to work with the government. The big
showstopper for the government projects was the lack of
government-related certifications for regulations like FIPS
and FedRAMP. Amazon lets the customer demand drive its
investments in auditing and compliance.

163

Summary
There are many regulations and laws that architects and
product owners must be aware of before building cloud-based
solutions. Knowing the audit requirements up front allows the
product team to prioritize tasks along the roadmap so that
security, privacy, and other regulatory requirements can be
built into the system early on instead of bolted on at the tail
end. Awareness of these requirements should create the
awareness of the need to design strategies around security,
logging, monitoring, SLA management, disaster recovery,
and other critical components of a compliant cloud service.

References

Alert Logic, Inc. (2013). “Targeted Attacks and Opportunistic
Hacks.” State of Cloud Security Report. Spring 2003.
Houston.

Aws.amazon.com (2010, December). “December 2010: PCI
Compliance and ISO 27001 Certification, Amazon Route 53,
Free EC2 Monitoring, GPU Clusters, and More.” Retrieved
from http://aws.amazon.com/about-aws/newsletters/2010/12/
15/
december-2010—-pci-compliance-and-iso27001-certification/.

AWS.amazon.com (2013). “AWS Achieves FedRAMP
Compliance.” Retrieved from http://aws.amazon.com/
about-aws/whats-new/2013/05/20/
aws-achieves-fedramp-compliance/.

164

Carsaretto, J. (2013, May 17). “Amazon Web Services and
Compliance Conversation; SOC 3 Reports Arrive.” Retrieved
from http://siliconangle.com/blog/2013/05/17/
amazon-web-services-starts-the-security-and-compliance-conversation-soc-3-reports-arrive/.

Clark, J. (2012, June 7). “How Amazon Exposed Its Guts:
The History of AWS’s EC2.” Retrieved from
http://www.zdnet.com/
how-amazon-exposed-its-guts-the-history-of-awss-ec2–3040155310/.

165

Chapter 8

Data Considerations in the
Cloud
If we have data, let’s look at the data. If we have opinions,
let’s go with mine.

—Jim Barksdale, former CEO of Netscape

When it comes to cloud computing decision making, nothing
influences those decisions more than data requirements.
Architects and product managers should have a firm
understanding of the requirements for all information that
flows in and out of the system. This chapter analyzes the
many characteristics of data and how those characteristics
influence design decisions.

Data Characteristics
There are many characteristics of data that should be taken
into consideration when building cloud services. Here is a
short list of categories:

• Physical characteristics
• Performance requirements
• Volatility

166

• Volume
• Regulatory requirements
• Transaction boundaries
• Retention period

All of the data requirements listed here factor into the
decision of how to store the underlying data. There are two
key decisions to make that we will discuss toward the end of
the chapter:

1. Multitenant or single tenant.
2. Which type of data store to use: SQL, NoSQL, file, and so
on.

In the following sections we will discuss design
considerations for each data characteristic.

Physical Characteristics

When analyzing physical characteristics, many data points
need to be collected. The location of the data is an important
piece of information. Does the data already exist or is this a
new data set? If it already exists, does the data need to be
moved to the cloud or will the data be created in the cloud? If
the data has to be transported to the cloud, how big is it? If we
are talking about a huge amount of data (terabytes), this
presents a challenge. Some cloud vendors offer the capability
to ship large amounts of data to them so they can manually
load the data on the customer’s behalf, but if the data is
highly sensitive, do we really want a truckload of sensitive
data going off-site? If the data is new, more than likely all of
the data can be created in the cloud (public or private) and the
ugly step of transferring huge amounts of data for an initial

167

load is not needed. The location of the data also is relevant
when analyzing legal responsibilities. Different countries
have different laws about data entering and leaving the
country’s borders.

Who owns the data? Does the company building the software
own it, is the data coming from a third party, or does the
customer of the system own the data? Can the data be shared
with other companies? If so, do certain attributes need to be
masked to hide it from other parties? Ownership of data is an
important characteristic and the answer to the ownership
question should be written in the contracts between the
service providers and their customers. For a company
building Software as a Service (SaaS), Platform as a Service
(PaaS), or Infrastructure as a Service (IaaS) solutions,
answers to data ownership and sharing could drive design
decisions on whether separate databases and even separate
database servers are required per client in order to meet
certain demands around privacy, security, and service level
agreements (SLAs).

Performance Requirements

Performance falls into three categories: real time, near real
time, and delayed time. Real-time performance is usually
defined as subsecond response time. Websites typically strive
for half-second response time or less. Near real time usually
refers to within a second or two. Sometimes near real time
means “perceived real time.” Perceived real time means the
performance is near real time but to the end user it appears to
be real time. For example, with point-of-sale (POS)
technology, the perceived time for cashing out a customer at

168

the cash register is the time it takes to spit out the receipt after
all the items are scanned and the discounts are processed.
Often, tasks are performed during the entire shopping
experience that may take one second or more, but these tasks
are finished by checkout. Even though some tasks take longer
than the real-time standard of half a second, the tasks visible
to the consumer (generating the receipt) occur in real time,
hence the term perceived real time. Delayed time can range
from a few seconds to batch time frames of daily, weekly,
monthly, and so on.

The response time categories drive major design decisions.
The faster the response time required, the more likely the
architects will need to leverage memory over disk. Common
design patterns for high-volume fast-performing data sets are:

• Use a caching layer.
• Reduce the size of data sets (store hash values or

binary representations of attributes).
• Separate databases into read-only and write-only

nodes.
• Shard data into customer-, time-, or domain-specific

shards.
• Archive aging data to reduce table sizes.
• Denormalize data sets.

There are many other methods. Understanding performance
requirements is key in driving these types of design decisions.

Volatility

Volatility refers to the frequency in which the data changes.
Data sets are either static or dynamic. Static data sets are

169

usually event-driven data that occur in chronological order.
Examples are web logs, transactions, and collection data.
Common types of information in web logs are page views,
referring traffic, search terms, user IP addresses, and the like.
Common transactions are bank debits and credits,
point-of-sale purchases, stock trading, and so forth. Examples
of collection data are readings from manufacturing machines,
environmental readings like weather, and human genome
data. Static data sets like these are write-once, read-many type
data sets because they occur in a point of time but are
analyzed over and over to detect patterns and observe
behaviors. These data sets often are stored over long periods
of time and consume terabytes of data. Large, static data sets
of this nature often require nonstandard database practices to
maximize performance. Common practices for mining these
types of data sets are to denormalize the data, leverage star or
snowflake schemas, leverage NoSQL databases, and, more
recently, apply big data technologies.

Dynamic data requires entirely different designs. If data is
changing frequently, a normalized relational database
management system (RDMS) is the most common solution.
Relational databases are great for processing ACID
(atomicity, consistency, isolation, durability) transactions to
ensure the reliability of the data. Normalized relational
databases protect the integrity of the data by ensuring that
duplicate data and orphan records do not exist.

Another important characteristic of volatility is the frequency
of the data. One million rows of data a month is a much easier
problem to design for than one million rows a minute. The
speed at which data flows (add, change, delete) is a huge
factor in the overall architecture of the data layer within the

170

cloud. Understanding the different disk storage systems
within the cloud is critical. For example, on Amazon Web
Services (AWS), S3 is a highly reliable disk storage system,
but it is not the highest performing. EBS volumes are local
disk systems that lack the reliability and redundancy of S3 but
perform faster. It is key to know the data requirements so that
the best disk storage system is selected to solve specific
problems.

Volume

Volume refers to the amount of data that a system must
maintain and process. There are many advantages of using
relational databases, but when data volumes hit a certain size,
relational databases can become too slow and too expensive
to maintain. Architects must also determine how much data is
relevant enough to be maintained online and available for
access and how much data should be archived or stored on
slower and less expensive disks. Volume also impacts the
design of a backup strategy. Backing up databases and file
systems is a critical component of business continuity and
disaster recovery, and it must be compliant with regulations
such as SSAE16 and others. Backups tend to consume large
amounts of CPU cycles and could impact the overall system
performance without a sound design. Full backups are often
performed daily while incremental backups are performed
multiple times throughout the day. One common strategy is to
perform backups on a slave database so that the application
performance is not impacted.

171

Regulatory Requirements

Regulation plays a major role in design decisions pertaining
to data. Almost any company delivering cloud services in a
B2B model can expect customers to demand certifications in
various regulations such as SAS 70, SSAE 16, ISO 27001,
HIPAA, PCI, and others. Data that is classified as PII
(personally identifiable information) must be encrypted in
flight and at rest, which creates performance overhead,
especially if those fields have high volatility and volumes. PII
data is a big contributor for companies choosing to leverage
private and hybrid clouds. Many companies refuse to put
sensitive and private data in a public, multitenant
environment. Understanding regulatory constraints and risks
can drive deployment model decisions.

Transaction Boundaries

Transaction boundaries can be thought of as a unit of work. In
e-commerce, shoppers interact with data on a web form and
make various changes to the data as they think through their
shopping event. When they place an order, all of the decisions
they have made are either committed or rejected based on
whether they have a valid credit card and available balance or
if the items are still in stock. A good example of a transaction
boundary is the following process flow common to travel
sites like Expedia.com.

A consumer from Chicago is looking to take a family
vacation to Disney World in Orlando, Florida. She logs onto
Expedia.com and proceeds to book a flight, a hotel, and a

172

rental car. Behind the scenes, Expedia is calling application
programming interfaces (APIs) to three different companies,
like US Airways for the airfare, Marriott for the hotel, and
Hertz for the rental car. As the consumer is guided through
the process flow of selecting an airline, a hotel, and a car, the
data is uncommitted until the consumer confirms the
purchase. Once the consumer confirms the itinerary, Expedia
calls the three different vendors’ APIs with a request to book
the reservation. If any one of the three calls fails, Expedia
needs to ask the consumer if she still wants to proceed with
the other two. Even though the initial call to US Airways may
have been valid, the entire transaction boundary is not yet
complete, and, therefore, the flight should not yet be booked.
Committing each part of the transaction independently could
create real data quality and customer satisfaction issues if any
of the parts of the transaction are purchased while other parts
fail. The consumer may not want the trip if any one of the
three parts of the trip can’t be booked.

Understanding transaction boundaries is critical for
determining which data points need to store state and which
don’t. Remember that RESTful (Representational State
Transfer) services are stateless by design, so the architect
needs to determine the best way to maintain state for this
multipart transaction, which might require caching, writing to
a queue, writing to a temp table or disk, or some other
method. The frequency in which a multipart transaction like
the Expedia example occurs and the volume of these
transactions also come into play. If this use case is expected
to occur often, then writing the data to tables or disk will
likely create performance bottlenecks, and caching the data in
memory might be a better solution.

173

Retention Period

Retention period refers to how long data must be kept. For
example, financial data is usually required to be stored for
seven years for auditing purposes. This does not mean that
seven years must be available online; it simply means the data
should not be destroyed until it is older than seven years. For
example, online banking usually provides six months’ to a
year’s worth of bank statements online. Users need to submit
requests for any statements older than a year. These requests
are handled in batch and sometimes come with a processing
fee, because the bank has to retrieve the data from off-line
storage.

Understanding retention periods is a deciding factor in
selecting the proper storage solutions. Data that needs to be
maintained but does not have to be available online in real
time or near real time can be stored on very cheap off-line
disk and/or tape solutions. Often this archived data is kept
off-site at a disaster recovery site. Data that needs to be
retrieved instantly needs to be stored on a fast-performing
disk that is redundant and can recover quickly from failures.

Multitenant or Single Tenant
The tenancy of a system should be determined by the data
characteristics just described. When referring to the data layer
of an architecture, multitenancy means that multiple
organizations or customers (tenants) share a group of servers.
Most definitions would say a single server, but it typically
requires multiple servers (i.e., master–slave) to support a

174

tenant. Single tenant means that only one tenant is supported
per each group of servers. Figures 8.1 and 8.2 show three
multitenancy design strategies that each solve a unique set of
requirements.

Figure 8.1 Total Isolation and Data Isolation

Figure 8.2 Data Segregation

175

In Figure 8.1, the image on the left is the “total isolation”
strategy, which is an example of single tenant. In this
example, both the database layer and the application layer
have dedicated resources for each tenant.

Advantages Disadvantages
Provides
independence Most expensive

Privacy Minimal reuse
Highest
scalability Highest complexity

By isolating tenants to their own servers, each tenant has a
high degree of independence, meaning that if there is an
application or database bottleneck in any of the servers, it has
limited or no impact on the other tenants. Because no other
tenant has access to these servers, there is a higher degree of
privacy. Also, systems with dedicated servers for each tenant
scale better because of the increase in compute power.
However, these advantages come with costs. Single tenant is
the most expensive strategy. Each tenant bears an
independent cost to the overall system. The ability to reuse
existing infrastructure is limited, which creates complexities
for managing infrastructure due to the increasing number of
servers. The applications must also be infrastructure aware
and know how to point to the correct infrastructure.

The image on the right in Figure 8.1 is the “data isolation”
strategy. In this model, the application takes a multitenant
approach to the application layer by sharing application
servers, web servers, and so on. The database layer is single
tenant, making this a hybrid approach between multitenancy
and single tenant. In this model, we still get the advantages of

176

independence and privacy while reducing some of the cost
and complexities. Figure 8.2 shows a true multitenancy
model.

The “data segregation” strategy separates the tenants into
different database schemas, but they do share the same
servers. In this model, all layers are shared for all tenants.

Advantages Disadvantages
Most cost
effective Lack of independence

Least complex Lowest performance
Highest reuse Lowest scalability

This model is the most cost effective due to the large amount
of reuse. It is also the least complex because it requires many
fewer servers. The challenge is that a performance issue with
one tenant can create issues for other tenants. Also, fewer
servers means less performance and less scalability. In fact, as
tenants are added to the system, the system becomes more
vulnerable to failure.

When would we use these strategies? The total isolation
approach is commonly used when a tenant has enormous
amounts of traffic. In this case it makes sense to dedicate
servers to this tenant so it can maximize scaling while not
causing disruptions to other clients. The data isolation
strategy is often used to protect the privacy of each tenant’s
data and also to allow tenants to scale independently. The
data isolation strategy is often used when the amount of
traffic is not overwhelming, yet there still is a need to store a
tenant’s data in its own schema for privacy reasons.

177

One company I worked for had many retail clients. Some
clients had hundreds and even thousands of stores with
several millions shoppers, while other retailers may have had
a dozen or fewer stores with shopper counts under a million.
The really big retailers were very strict about security and
privacy while the smaller chains were not as strict. As a
young start-up, we had to balance our costs with our
contractual agreements with the retailers. We implemented a
hybrid solution. We had one extremely large client that had
several thousand stores. We decided to implement a total
isolation strategy for this client because of its potential to
drive enormous amounts of traffic and because of the
importance of delivering to a customer of that size. For all of
the smaller retailers that had very average traffic, we used the
data segregation model to keep our costs to a minimum. For
all other customers that were large to average size in terms of
both stores and traffic, we used the data isolation method.
Each tenant had its own independent database servers but a
shared web and application layer.

Every business is different. It is important to understand what
the different tenancy options are. Based on the business
requirements, choose the right strategy or combination of
strategies to support the needs around independence, security,
privacy, scalability, complexity, and costs.

Choosing Data Store Types
Another important design decision to make is what type of
data store to use. Many IT shops are very familiar with
relational databases and immediately default to solving every

178

data problem with a relational database. You can build a
house with a hammer, but if a nail gun is available, you
should probably use it.

Relational databases are great for online transaction
processing (OLTP) activities because they guarantee that
transactions are processed successfully in order for the data to
get stored in the database. In addition, relational databases
have superior security features and a powerful querying
engine. Over the last several years, NoSQL databases have
soared in popularity mainly due to two reasons: the increasing
amount of data being stored and access to elastic cloud
computing resources. Disk solutions have become much
cheaper and faster, which has led to companies storing more
data than ever before. It is not uncommon for a company to
have petabytes of data in this day and age. Normally, large
amounts of data like this are used to perform analytics, data
mining, pattern recognition, machine learning, and other
tasks. Companies can leverage the cloud to provision many
servers to distribute workloads across many nodes to speed up
the analysis and then deprovision all of the servers when the
analysis is finished.

When data gets this big, relational databases just cannot
perform fast enough. Relational databases were built to force
referential integrity. To accomplish this, a lot of overhead is
built into the database engine to ensure that transactions
complete and are committed before data is stored into the
tables. Relational databases also require indexes to assist in
retrieval of records. Once record counts get big enough, the
indexes become counterproductive and database performance
becomes unacceptable.

179

NoSQL databases were built to solve these problems. There
are four types of NoSQL databases.

Key-Value Store

Key-value store databases leverage a hash table where a
unique key with a pointer points to a particular item of the
data. This is the simplest of the four NoSQL database types. It
is fast and highly scalable and useful for processing massive
amounts of writes like tweets. It is also good for reading
large, static, structured data like historical orders, events, and
transactions. Its disadvantage is that it has no schema, making
it a bad choice for handling complex data and relationships.
Examples of key-value store databases are Redis, Voldemort
(used by LinkedIn), and Amazon’s DynamoDB.

Column Store

Column store databases were created to store and process
large amounts of data distributed over many machines. The
hash key points to multiple columns that are organized in
column families. The power of this database is that columns
can be added on the fly and do not have to exist in every row.
The advantage of column store databases is that they are
incredibly fast and scalable and easy to alter on the fly. It is a
great database to use when integrating data feeds from
different sources with different structures. It is not good for
interconnected data sources. Examples of column store
databases are Hadoop and Cassandra.

180

Document Store

Document store databases are used for storing unstructured
data stored within documents. Data is often encapsulated with
XML, JSON, PDF, Word, Excel, and other common
document types. Most logging solutions use a document store
to combine log files from many different sources, such as
database logs, web server logs, applications server logs,
application logs, and so on. These databases are great at
scaling large amounts of data made up of different formats
but struggle with interconnected data. Examples of document
store databases are CouchDB and MongoDB.

Graph Database

Graph databases are used for storing and managing
interconnected relationships. These databases are often used
to show visual representations of relationships, especially in
the area of social media analysis. These databases are great at
graphing, but not efficient for much else as the entire
relationship tree must be traversed in order to produce results.
Examples of graph databases are Neo4j and InfoGrid.

Other Storage Options

We discussed SQL and NoSQL options, but there are also
good reasons to store data as files, as well. For example, large
files such as photos, videos, and MP3s can be several
megabytes or bigger. Web applications that try to store and
retrieve these large fields from databases will struggle to
create a fast-performing user experience. A better strategy is

181

to leverage a content delivery network (CDN). A CDN is a
network of distributed computers located in multiple data
centers across the Internet that provides high availability and
high performance. CDNs are the tool of choice for streaming
media and other bandwidth-intensive data.

AEA Case Study: Data Design Decisions
After Jamie researched the different data stores he went back
to his business architecture diagram to evaluate each
component of the architecture. He categorizes his data into
the following buckets:

• Online transaction processing (OLTP) data
• Transactional data
• Logging data
• Rich media content
• Financial data

The OLTP data is derived from any of the data entry type
activities: customer registrations, content creation, campaign
and advertising setups, and so forth. The transactional data
refers to the activities that occur during the auction process,
such as bids, social interactions, and clicks. Logging data is
generated from every component from the applications layer,
application stack layer, and infrastructure layer. The rich
media content is the videos, images, audio files, and various
document files that are uploaded to the system. Last but not
least is the financial data, which represents the actual
financial transactions (online payments, returns, seller fees).
Jamie reaches the following conclusions that he will present
to his team for further vetting:

• OLTP data. Relational database
• Transaction. NoSQL, column store
• Logging. Document store

182

• Rich media. Files, leverage CDN
• Financial data. Relational database

He chose a relational database for the OLTP data because the
data was being entered in real time online, he wanted to
enforce referential data, and he wanted to provide querying
capabilities. He chose it for the financial integrity and for its
strong security features. He chose a column store database for
two reasons. First, he anticipates enormous volumes since he
has to record every click and bid that occurs for every
auction. Second, because they are integrating with numerous
third parties, they anticipate slightly different data formats,
which the column store databases are good at handling. The
logging will be handled through a logging service either
installed on IaaS or provided by a SaaS solution. More than
likely the logging tool will leverage a document store. The
CDN will be leveraged to optimize performance of the larger
files. As the project progresses, Jamie will discover he needs
other data stores for things like search and cache. In both
cases he will likely leverage either a SaaS solution or a PaaS
plug-in, or he will install a solution on top of the IaaS
solution.

Summary
There are many characteristics of data, and understanding the
characteristics and the requirements for each characteristic is
crucial for selecting the correct cloud service model, cloud
deployment model, database design(s), and data storage
systems. Nobody would ever attempt to build a house without
first understanding the requirements of the house and
analyzing the floor plan, yet some companies rush to start

183

building software before completely understanding their data
requirements. Whether an architect is building a new system
or migrating an existing one, the architect would be wise to
spend time with the product team to evaluate each of the data
characteristics described in this chapter. Without a complete
understanding of each data characteristic, it will be extremely
difficult to build a system optimized to meet the needs of the
business.

Reference

Valentine, D. (2013, February 28). “Rules of Engagement:
NoSQL Column Data Stores.” Retrieved from
http://www.ingenioussql.com/2013/02/28/
rules-of-engagement-nosql-column-data-stores/.

184

Chapter 9

Security Design in the Cloud
The only truly secure system is one that is powered off, cast
in a block of concrete, and sealed in a lead-lined room with
armed guards.

—Gene Spafford, professor, Purdue University

Prior to cloud computing, buyers of commercial software
products did not demand the level of security from vendors
that they do today. Software that was purchased and installed
locally within the enterprise provided various security
features for the buyer to configure in order to secure the
application. The vendors would make it easy to integrate with
enterprise security data stores such as Active Directory and
provide single sign-on (SSO) capabilities and other features
so that buyers could configure the software to meet their
security requirements. These commercial software products
were run within the buyer’s perimeter behind the corporate
firewall. With cloud computing, vendors have a greater
responsibility to secure the software on behalf of the cloud
consumers. Since consumers are giving up control and often
allowing their data to live outside of their firewall, they are
now requiring that the vendors comply with various
regulations. Building enterprise software in the cloud today
requires a heavy focus on security. This is a welcome change
for those of us who have been waving the red flag the past

185

several years about the lack of focus on application security in
the enterprise. There is a common myth that critical data in
the cloud cannot be secure. The reality is that security must be
architected into the system regardless of where the data lives.
It is not a matter of where the data resides; it is a matter of
how much security is built into the cloud service.

This chapter will discuss the impacts of data as it pertains to
cloud security and both the real and perceived ramifications.
From there, we will discuss how much security is
required—an amount that is different for every project. Then
we will discuss the responsibilities of both the cloud service
provider and the cloud service consumer for each cloud
service model. Finally, we will discuss security strategies for
these focus areas: policy enforcement, encryption, key
management, web security, application programming
interface (API) management, patch management, logging,
monitoring, and auditing.

The Truth about Data in the
Cloud
Many companies are quick to write off building services in
the public cloud because of the belief that data outside of their
firewalls cannot be secured and cannot meet the requirements
of regulations such as PCI DSS (Payment Card Industry Data
Security Standard) and HIPAA (Health Information
Portability and Accountability Act). The fact is, none of these
regulations declare where the data can and cannot reside.
What the regulations do dictate is that PII (personally

186

identifiable information) such as demographic data, credit
card numbers, or health-related information must be
encrypted at all times. These requirements can be met
regardless of whether the data lives in the public cloud.

The next issue deals with a government’s ability to seize data
from cloud service providers. In the United States, the USA
Patriot Act of 2001 was made law shortly after the 2001
terrorist attacks on the World Trade Center. This law gave the
U.S. government unprecedented access to request data from
any U.S.-based company regardless of what country its data
center is in. In other words, any U.S.-based company with a
global presence is required by law to comply with the U.S.
government’s request for data even if the data contains
information for non-U.S. citizens on servers outside of U.S.
soil. Many other countries have similar laws even though
these laws are not as highly publicized as the Patriot Act.

Due to laws like the Patriot Act, many companies make the
assumption that they just cannot put their data at risk by
allowing a cloud service provider to store the data on their
behalf. This assumption is only partially true and can easily
be mitigated. First, the government can request data from any
company regardless of whether the data is in the cloud.
Keeping the data on-premises does not protect a company
from being subject to a government request for data. Second,
it is true that the odds of a company being impacted by a
government search increase if the data is in a shared
environment with many other customers. However, if a
company encrypts its data, the government would have to
request that the company unencrypts the data so that it can
inspect it. Encrypting data is the best way to mitigate the risks

187

of government requests for data and invalidates the myth that
critical data can’t live in the public cloud.

In June 2013, Edward Snowden, a contractor working for the
National Security Agency (NSA) in the United States, leaked
documents that revealed that the NSA was extracting large
volumes of data from major U.S. companies such as Verizon,
Facebook, Google, Microsoft, and others. Many people
interpreted this news to mean that the public cloud was no
longer safe. What many people did not realize was that much
of the data that was retrieved from these big companies’ data
centers was not hosted in the public cloud. For example,
Verizon runs its own data centers and none of the phone call
metadata that the government retrieved from Verizon was
from servers in the cloud. The same holds true for Facebook,
which owns its own private cloud. The reality is that no data
is safe anywhere from a request for data by government
agencies when national security is at stake.

How Much Security Is
Required
The level of security required for a cloud-based application or
service depends on numerous factors such as:

• Target industry
• Customer expectations
• Sensitivity of data being stored
• Risk tolerance
• Maturity of product

188

• Transmission boundaries

The target industry often determines what regulations are in
scope. For example, if the cloud services being built are in the
health care, government, or financial industries, the level of
security required is usually very high. If the cloud services are
in the online games or social web industries, the level of
security required is likely more moderate.
Business-to-business (B2B) services typically require a higher
level of security, because most companies consuming cloud
services require that all third-party vendors meet a minimum
set of security requirements. Consumer-facing services or
business-to-consumer (B2C) services usually offer a
use-at-your-own-risk service with terms of service that focus
on privacy but make very limited promises about security and
regulations. For example, Facebook has a terms-of-service
agreement that states that the security of your account is your
responsibility. Facebook gives you a list of 10 things you
agree to if you accept its terms of service.

Customer expectation is an interesting factor when
determining how much security and controls to put in place.
Sometimes it is the customers’ perception of the cloud that
can drive the security requirements. For example, a company
may plan on building its solution 100 percent in a public
cloud but encounters an important, large client that refuses to
have any of its data in the public cloud. If the client is
important enough, the company may decide to adopt a hybrid
cloud approach in order not to lose this customer even though
there might be no reason other than customer preference
driving that decision. This is common for both retail and
health care customers. In the two start-ups that I worked at,
both were deployed 100 percent in the public cloud until we

189

encountered some very profitable and important customers
that forced us to run some of our services in a private data
center.

The sensitivity of the data within cloud services has a major
impact on the security requirements. Social media data such
as tweets, photos from photo-sharing applications like
Instagram and Pinterest, and Facebook wall messages are all
public information. Users agree that this information is public
when they accept the terms of service. These social media
services do not have the requirement to encrypt the data at
rest in the database. Companies processing medical claims,
payments, top-secret government information, and biometric
data will be subject to regulatory controls that require
encryption of data at rest in the database and a higher level of
process and controls in the data center.

Risk tolerance can drive security requirements, as well. Some
companies may feel that a security breach would be so
disruptive to their businesses, create such bad public relations,
and damage customer satisfaction so much that they apply the
strongest security controls even though the industry and the
customers don’t demand it. A start-up or smaller company
may be very risk tolerant and rank getting to market quickly
at a low cost as a higher priority than investing heavily in
security. A larger company may rank strong security controls
higher than speed-to-market because of the amount of
publicity it would receive if it had a breach and the impact of
that publicity on its shareholders and customers.

The maturity of the product often drives security
requirements, as well. Building products is an evolutionary
process. Often, companies have a product roadmap that

190

balances business features with technical requirements like
security, scalability, and so on. Many products don’t need the
highest level of security and scalability on day one but will
eventually need to add these features over time as the product
matures and gains more traction in the marketplace.

Transmission boundaries refer to what endpoints the data
travels to and from. A cloud service that is used internally
within a company where both endpoints are contained within
the company’s virtual private network (VPN) will require
much less security than a cloud service that travels outside of
the company’s data center over the Internet. Data that crosses
international boundaries can be required to address
country-specific security requirements. The U.S.-EU Safe
Harbor regulation requires U.S. companies to comply with the
EU Data Protection Directive controls in order to transfer
personal data outside the European Union. As of the writing
of this book, U.S. companies self-certify. After the recent
NSA scandal, this law could change in the near future and a
formal certification may be required.

Once a company considers these factors and determines how
much security is required for its cloud service, the next
questions to ask are who is going to do the work (build versus
buy), how will the security requirements be met, and by when
is it needed. For each security requirement there should be an
evaluation to determine if there is a solution available in the
marketplace or if the requirement should be met by building
the solution internally. There are many open source,
commercial, and Software as a Service (SaaS)–based security
solutions in the marketplace today. Security is a dynamic field
and keeping software current enough to address the most
recent security threats and best practices is a daunting task. A

191

best practice is to leverage a combination of open source or
commercial products or Security as a Service (SecaaS)–based
software to meet requirements such as SSO, federated
security, intrusion detection, intrusion prevention, encryption,
and more.

AEA Case Study: Determining the Level of Security
Required
Acme eAuction’s (AEA) target industry is e-commerce
auction and retail. This industry has embraced doing business
over the Internet for years and was also an early adopter of
cloud computing. Auction sites like eBay and e-commerce
sites like Amazon have been selling goods and services in the
cloud for years.
Buyers and sellers will be not be opposed to using AEA’s
services if they are deployed in the cloud. They will,
however, expect their personal information, credit card
information, and financial transactions to be protected against
misuse and theft. Channel partners, affiliate networks, and
App Store developers will expect secure access to the
platform’s APIs and expect that all data transmitted between
the two parties will be over a secure protocol.
To avoid having the entire auction platform falling under
scope of PCI DSS regulations, AEA chose to off-load all
credit card business processes to a certified third-party SecaaS
solution. The AEA auction platform integrates with this
trusted SecaaS solution, which manages the consumers’ credit
card transactions and returns a hash-key value to AEA. AEA
stores this hashed value in its database and never sees the
actual credit card anywhere on the platform.
After analyzing the requirements of all of the external
partners and customers, AEA realizes that building and

192

maintaining authorization and authentication services for
external accounts is a challenging task. Each external party
may support a different technology stack and use various
protocols for communicating. Instead of building all of the
code to support these permutations, AEA chose to select a
SecaaS solution to manage the security of all of these
endpoints. Another factor for this decision was that AEA has
a low tolerance for risk, knowing that a major security breach
could create a huge loss of business and expose it to a lot of
bad publicity.

Responsibilities for Each
Cloud Service Model
When leveraging the cloud, the cloud service consumer
(CSC) and the cloud service provider (CSP) have a shared
responsibility for securing the cloud services. As shown in
Figure 9.1, the further up the cloud stack consumers go, the
more they shift the responsibility to the provider.

Figure 9.1 Infrastructure as a Service

193

The cloud stack consists of four categories. At the bottom is
the infrastructure layer, which is made up of physical things
like data centers, server-related hardware and peripherals,
network infrastructure, storage devices, and more. Companies
that are not leveraging cloud computing or are building their
own private clouds have to provide the security for all of this
physical infrastructure. For those companies leveraging a
public cloud solution, the public cloud service provider
manages the physical infrastructure security on behalf of the
consumer.

Some companies might cringe at the thought of outsourcing
infrastructure security to a vendor, but the fact of the matter is

194

most public Infrastructure as a Service (IaaS) providers invest
a substantial amount of time, money, and human capital into
providing world-class security at levels far greater than most
cloud consumers can feasibly provide. For example, Amazon
Web Services (AWS) has been certified in ISO 27001,
HIPAA, PCI, FISO, SSAE 16, FedRAMP, ITAR, FIPS, and
other regulations. Many companies would be hard pressed to
invest in that amount of security and auditing within their data
centers.

As we move up to the application stack layer, where PaaS
solutions take root, we see a shift in responsibility to the
providers for securing the underlying application software,
such as operating systems, application servers, database
software, and programming languages like .NET, Ruby,
Python, Java, and many others. There are a number of other
application stack tools that provide on-demand services like
caching, queuing, messaging, e-mail, logging, monitoring,
and others. In an IaaS service model, the service consumer
would own managing and securing all of these services, but
with Platform as a Service (PaaS), this is all handled by the
service provider in some cases. Let’s elaborate.

There are actually six distinct deployment models for PaaS, as
shown in Figure 9.2.

Figure 9.2 Platform as a Service

195

The public hosted deployment model is where the provider
provides the IaaS in the provider’s own public cloud.
Examples are Google App Engine, Force.com, and Microsoft
Azure. In this model, the provider is responsible for all of the
security for both the infrastructure and application stack. In
some cases, the PaaS provider runs on top of another
provider’s infrastructure. For example, Heroku and Engine
Yard both run on AWS. In the consumers’ eyes, the PaaS
provider is responsible for all of the infrastructure and
application stack security, but in reality, the PaaS provider
manages the application stack security but leverages the IaaS
provider to provide the infrastructure security. In the
public-hosted model, only the PaaS provider is responsible

196

for securing the actual PaaS software. The PaaS software is a
shared service consumed by all PaaS consumers.

The public-managed deployment model is where the PaaS
provider deploys on a public cloud of the CSC’s choice and
hires the PaaS provider or some other third party to manage
the PaaS software and the application stack on its behalf.
(Note: Not all PaaS providers have the ability to run on
multiple public clouds.) In the public-managed model, the
PaaS software needs to be managed by the customer, meaning
it is up to the customer and its managed service provider to
determine when to update the PaaS software when patches
and fixes come out. Although the consumer still shifts the
responsibility of security for the PaaS software and the
application stack, the consumer is still involved in the process
of updating software. In the public-hosted model, this all
happens transparently to the consumer.

The public-unmanaged deployment model is where the PaaS
provider deploys on an IaaS provider’s public cloud, and the
consumer takes the responsibility of managing and patching
both the PaaS software and application stack. This is a
common deployment model within enterprises when a hybrid
cloud is chosen. Often with a hybrid PaaS solution, the
consumer must choose a PaaS that can be deployed in any
cloud, public or private. PaaS providers that meet this
requirement only deliver PaaS as software and do not handle
the infrastructure layer. An example of this model would be
deploying an open-source PaaS like Red Hat’s OpenShift on
top of an open source IaaS solution like OpenStack, which
can be deployed both within the consumer’s data center for
some workloads and in a public cloud IaaS provider like
Rackspace for other workloads.

197

The private-hosted model is where a private PaaS is deployed
on an externally hosted private IaaS cloud. In this model the
consumer shifts the responsibility of the infrastructure layer to
the IaaS provider, but still owns managing and securing the
application stack and the PaaS software. An example of this
model would be deploying an open source PaaS like Cloud
Foundry on top of an open source IaaS solution like
OpenStack, which can be deployed in a private cloud IaaS
provider like Rackspace for other workloads. (Note:
Rackspace provides both public and private IaaS solutions.)

The private-managed model is similar to the public-hosted
model except that the IaaS cloud is a private cloud, either
externally hosted or within the consumer’s own data center. If
the IaaS cloud is externally hosted, then the only difference
between the private-hosted and the private-managed model is
that the consumer hires a service provider to manage and
secure the PaaS and application stack and relies on the IaaS
provider to manage and secure the infrastructure layer. If the
IaaS cloud is internal, then the consumer owns the
responsibility for managing and securing the infrastructure
layer, while the managed service provider manages and
secures the PaaS software and the application stack.

The private-unmanaged model is where the consumer is in
charge of securing the entire cloud stack plus the PaaS
software. In reality, this is a private IaaS with the addition of
managing a PaaS solution in the data center. This is a popular
option for enterprises that want to keep data out of the public
cloud and want to own the security responsibility. Another
reason is the consumer may want to run on specific hardware
specifications not available in the public cloud or it may want
to shift certain workloads to bare-metal (nonvirtualized)

198

machines to gain performance improvements. An example of
this model is deploying a .NET PaaS like Apprenda on top of
OpenStack running in an internal private cloud.

The next layer up is the application layer. This is where
application development must focus on things like using
secure transmission protocols (https, sFTP, etc.), encrypting
data, authenticating and authorizing users, protecting against
web vulnerabilities, and much more. For SaaS solutions, the
responsibility for application security shifts to the provider as
shown in Figure 9.3.

Figure 9.3 Software as a Service

199

At the top of the stack is the user layer. At this layer the
consumer performs user administration tasks such as adding
users to a SaaS application, assigning roles to a user, granting
access to allow developers to build on top of cloud services,
and so on. In some cases, the end user may be responsible for
managing its own users. For example, a consumer may build
a SaaS solution on top of a PaaS or IaaS provider and allow
its customers to self-manage access within their own
organizations.

To sum up the security responsibilities, choosing cloud
service and cloud deployment models determines which
responsibilities are owned by the provider and which are
owned by the consumer. Once a consumer determines what
the provider is responsible for, it should then evaluate the
provider’s security controls and accreditations to determine
whether the provider can meet the desired security
requirements.

Security Strategies
Most applications built in the cloud, public or private, are
distributed in nature. The reason many applications are built
like this is so they can be programmed to scale horizontally as
demand goes up. A typical cloud architecture may have a
dedicated web server farm, a web service farm, a caching
server farm, and a database server farm. In addition, each
farm may be redundant across multiple data centers, physical
or virtual. As one can imagine, the number of servers in a
scalable cloud architecture can grow to a high level. This is

200

why a company should apply the following three key
strategies for managing security in a cloud-based application:

1. Centralization
2. Standardization
3. Automation

Centralization refers to the practice of consolidating a set of
security controls, processes, policies, and services and
reducing the number of places where security needs to be
managed and implemented. For example, a common set of
services should be built for allowing users to be authenticated
and authorized to use cloud services as opposed to having
each application provide different solutions. All of the
security controls related to the application stack should be
administered from one place, as well.

Here is an analogy to explain centralization. A grocery store
has doors in two parts of the building. There are front doors,
which are the only doors that customers (users) can come in
and there are back doors where shipments (deployments) and
maintenance workers (systems administrators) enter. The rest
of the building is double solid concrete walls with security
cameras everywhere. The back door is heavily secured and
only authorized personnel with the appropriate badge can
enter. The front door has some basic protections like double
pane glass, but any customer willing to spend money is
welcome during hours of operation. If the grocery store
changes its hours of operation (policy), it simply changes a
time setting in the alarm system as to when the doors lock.
This same mentality should be applied to cloud-based
systems. There should be a limited way for people or systems
to get access. Customers should all enter the same way

201

through one place where they can be monitored. IT people
who need access should have a single point of entry with the
appropriate controls and credentials required to enter parts of
the system that no others can. Finally, policies should be
centralized and configurable so changes can be made and
tracked consistently and quickly.

Standardization is the next important strategy. Security should
be thought of as a core service that can be shared across the
enterprise, not a solution for a specific application. Each
application having its own unique security solutions is the
equivalent of adding doors all over the side of the building in
the grocery store analogy. Companies should look at
implementing industry standards for accessing systems, such
as OAuth and OpenID, when connecting to third parties.
Leveraging standard application protocols like Lightweight
Directory Access Protocol (LDAP) for querying and
modifying directory services like Active Directory or
ApacheDS is highly recommended, as well. In Chapter 10,
“Creating a Centralized Logging Strategy,” we will discuss
standards around log and error messages.

Standardization applies to three areas. First, we should
subscribe to industry best practices when it comes to
implementing security solutions and selecting things like the
method of encryption, authorization, API tokenization, and
the like. Second, security should be implemented as a
stand-alone set of services that are shared across applications.
Third, all of the security data outputs (logs, errors, warnings,
debugging data, etc.) should follow standard naming
conventions and formats (we will discuss this more in
Chapter 10).

202

The third strategy is automation. A great example of the need
for automation comes from the book called The Phoenix
Project. This book tells a fictional, yet relevant, story of a
company whose IT department was always missing dates and
never finding time to implement technical requirements such
as a large number of security tasks. Over time, they started
figuring out what steps were repeatable so that they could
automate them. Once they automated the process for creating
environments and deploying software, they were able to
implement the proper security controls and process within the
automation steps. Before they implemented automation,
development and deployments took so much time that they
never had enough time left in their sprints to focus on
nonfunctional requirements such as security.

Another reason automation is so important is because in order
to automatically scale as demand increases or decreases,
virtual machines and code deployments must be scripted so
that no human intervention is required to keep up with
demand. All cloud infrastructure resources should be created
from automated scripts to ensure that the latest security
patches and controls are automatically in place as resources
are created on-demand. If provisioning new resources
requires manual intervention, the risks of exposing gaps in
security increase due to human error.

Areas of Focus
In addition to the three security strategies, a strategy I call
PDP, which consists of three distinct actions, must be
implemented. Those three actions are:

203

1. Protection
2. Detection
3. Prevention

Protection is the first area of focus and is one that most people
are familiar with. This is where we implement all of the
security controls, policies, and processes to protect the system
and the company from security breaches. Detection is the
process of mining logs, triggering events, and proactively
trying to find security vulnerabilities within the systems. The
third action is prevention, where if we detect something, we
must take the necessary steps to prevent further damage. For
example, if we see a pattern where a large number of failed
attempts are being generated by a particular IP, we must
implement the necessary steps to block that IP to prevent any
damage. As an auditor once told me, “It’s nice that your
intrusion detection tools detected that these IPs are trying to
log into your systems, but what are you going to do about it?
Where is the intrusion prevention?”

In order to secure cloud-based systems, there are a number of
areas to focus the security controls on. Here are some of the
most important areas:

• Policy enforcement
• Encryption
• Key management
• Web security
• API management
• Patch management
• Logging
• Monitoring
• Auditing

204

Policy Enforcement

Policies are rules that are used to manage security within a
system. A best practice is to make these rules configurable
and decouple them from the applications that use them.
Policies are maintained at every layer of the cloud stack. At
the user layer, access policies are often maintained in a central
data store like Active Directory, where user information is
maintained and accessed through protocols like LDAP.
Changes to user data and rules should be managed within the
central data store and not within the application, unless the
rules are specific to the application.

At the application layer, application-specific rules should also
be maintained in a centralized data store abstracted from the
actual application. The application should access its own
central data store, which can be managed by a database, an
XML file, a registry, or some other method, via API so that if
the policies change, they can be changed in one place.

At the application stack layer, operating systems, databases,
application servers, and development languages all are
configurable already. The key to policy enforcement at this
level is automation. In an IaaS environment, this is
accomplished by scripting the infrastructure provisioning
process. A best practice is to create a template for each unique
machine image that contains all of the security policies
around access, port management, encryption, and so on. This
template, often referred to as the “gold image,” is used to
build the cloud servers that run the application stack and the
applications. When policies change, the gold image is updated
to reflect those changes. Then new servers are provisioned

205

while the old, outdated servers are deprovisioned. This entire
process can be scripted to be fully automated to eliminate
human error. This method is much easier than trying to
upgrade or patch existing servers, especially in an
environment that has hundreds or thousands of servers.

Recommendation: Identify policies at each layer of the cloud
stack. Isolate policies into a centralized data store.
Standardize all access to policies (e.g., API, standard
protocols, or scripts). Automate policies when the steps are
repeatable (e.g., golden image, deployments).

Encryption

Sensitive data processed in the cloud should always be
encrypted. Any message that is processed over the Internet
that contains sensitive data should use a secure protocol such
as https, sFTP, or SSL. But securing data in transit is not
enough. Some attributes will need to be encrypted at rest. At
rest refers to where the data is stored. Often data is stored in a
database, but sometimes it is stored as a file on a file system.

Encryption protects data from being read by the naked eye,
but it comes at a cost. For an application to understand the
contents of the data, the data must be unencrypted to be read,
which adds time to the process. Because of this, simply
encrypting every attribute is often not feasible. What is
required is that personally identifiable information (PII) data
is encrypted. Here are the types of data that fall under PII:

• Demographics information (full name, Social
Security number, address, etc.)

206

• Health information (biometrics, medications, medical
history, etc.)

• Financial information (credit card numbers, bank
account numbers, etc.)

It is also wise to encrypt any attributes that might give hints to
an unauthorized user about system information that could aid
in attacks. Examples of this kind of information are:

• IP addresses
• Server names
• Passwords
• Keys

There are a variety of ways to handle encryption. In a
database, sensitive data can be encrypted at the attribute level,
the row level, or the table level. At one start-up that I worked
at, we were maintaining biometric data for employees of our
corporate customers who had opted into our health and
wellness application. The biometric data was only needed the
first time the employee logged onto the system. What we
decided to do was create an employee-biometric table that
related back to the employee table that isolated all of the PII
data to a single table and encrypted that table only. This gave
us the following advantages:

• Simplicity. We could manage encryption at the table
level.

• Performance. We kept encryption out of the
employee table, which was accessed frequently and
for many different reasons.

• Traceability. It is much easier to produce proof of
privacy since all attributes in scope are isolated and
all API calls to the table are tracked.

207

For sensitive data that is stored outside of databases, there are
many options, as well. The data can be encrypted before
transmission and stored in its encrypted state. The file system
or folder structure that the data is stored in can be encrypted.
When files are accessed they can be password protected and
require a key to unencrypt. Also, there are many cloud storage
providers that provide certified storage services where data
can be sent securely to the cloud service where it is encrypted
and protected. These types of services are often used to store
medical records for HIPAA compliance.

Recommendation: Identify all sensitive data that flows in and
out of the system. Encrypt all sensitive data in flight and at
rest. Design for simplicity and performance. Isolate sensitive
data where it makes sense to minimize the amount of access
and to minimize performance issues due to frequent
decryption. Evaluate cloud vendors to ensure that they can
provide the level of encryption your application requires.

Key Management

Key management is a broad topic that could merit its own
chapter, but I will cover it at a high level. For this discussion,
I will focus on public and private key pairs. The public and
private keys are two uniquely and mathematically related
cryptographic keys. Whatever object is protected by a public
key can only be decrypted by the corresponding private key
and vice versa. The advantage of using public–private key
pairs is that if an authorized person or system gets access to
the data, they cannot decrypt and use the data without the
corresponding keys. This is why I recommend using
encryption and keys to protect against the Patriot Act and

208

other government surveillance policies that many countries
have.

A critical part of maintaining secure systems is the
management of these keys. There are some basic rules to
follow to ensure that the keys do not get discovered by people
or systems without permission. After all, keys are worthless if
they are in the hands of the wrong people. Here are some best
practices.

Keys should not be stored in clear text. Make sure that the
keys are encrypted before they are stored. Also, keys should
not be referenced directly in the code. Centralized policy
management should be applied to keys, as well. Store all keys
outside of the applications and provide a single secure method
of requesting the keys from within the applications. When
possible, keys should be rotated every 90 days. This is
especially important for the keys provided by the cloud
service provider. For example, when signing up for an AWS
account a key pair is issued. Eventually the entire production
system is deployed under this single account. Imagine the
damage if the key for the AWS account got into the wrong
hands. If keys are never rotated, there is a risk when people
leave the company and still know the keys. Key rotation
should be an automated process so it can be executed during
critical situations. For example, let’s say that one of the
systems within the cloud environment was compromised.
Once the threat was removed it would be wise to rotate the
keys right away to mitigate the risk in case the keys were
stolen. Also, if an employee who had access to the keys
leaves the company, the keys should be rotated immediately.

209

Another best practice is to make sure that the keys are never
stored on the same servers that they are protecting. For
example, if a public–private key pair is being used to protect
access to a database, don’t store the keys on the database
server. Keys should be stored in an isolated, protected
environment that has limited access, has a backup and
recovery plan, and is fully auditable. A loss of a key is
equivalent to losing the data because without the keys,
nobody can decipher the contents of the data.

Recommendation: Identify all the areas within the system that
require public–private key pairs. Implement a key
management strategy that includes the best practices of policy
management discussed earlier. Make sure keys are not stored
in clear text, are rotated regularly, and are centrally managed
in a highly secure data store with limited access.

Web Security

One of the most common ways that systems get compromised
is through web-based systems. Without the proper level of
security, unauthorized people and systems can intercept data
in transit, inject SQL statements, hijack user sessions, and
perform all kinds of malicious behaviors. Web security is a
very dynamic area because as soon as the industry figures out
how to address a current threat, the attackers figure out a new
way to attack. A best practice for companies building web
applications is to leverage the web frameworks for the
corresponding application stack. For example, Microsoft
developers should leverage the .NET framework, PHP
developers should leverage a framework like Zend, Python

210

developers would be wise to leverage the Django framework,
and Ruby developers can leverage Rails.

The frameworks are not the answer to web security; there is
much more security design that goes into building secure
systems (and I touch on many of them in this chapter).
However, most of these frameworks do a very good job of
protecting against the top 10 web threats. The key is to ensure
that you are using the most recent version of the framework
and keep up with the patches because security is a moving
target.

It is also wise to leverage a web vulnerability scanning
service. There are SaaS solutions for performing these types
of scans. They run continuously and report on vulnerabilities.
They rank the severity of the vulnerabilities and provide
detailed information of both the issue and some recommended
solutions. In some cases, cloud service consumers may
demand web vulnerability scanning in their contracts. In one
of my start-ups, it was common for customers to demand
scans because of the sensitivity of the types of data we were
processing.

Recommendation: Leverage updated web frameworks to
protect against the top 10 web vulnerabilities. Proactively and
continuously run vulnerability scans to detect security gaps
and address them before they are discovered by those with
malicious intent. Understand that these frameworks will not
guarantee that the systems are secure but will improve the
security of the web applications immensely over rolling your
own web security.

211

API Management

Back in Chapter 6 we discussed Representational State
Transfer or RESTful web APIs in great detail. One of the
advantages of cloud-based architectures is how easily
different cloud services can be integrated by leveraging APIs.
However, this creates some interesting security challenges
because each API within the system has the potential to be
accessed over the web. Luckily, a number of standards have
emerged so that each company does not have to build its own
API security from scratch. In fact, for companies sharing
APIs with partners and customers, it is an expectation that
your APIs support OAuth and OpenID. If there are scenarios
where OAuth or OpenID cannot be used, use basic
authentication over SSL. There are also several API
management SaaS solutions that are available, such as
Apigee, Mashery, and Layer7. These SaaS providers can help
secure APIs as well as provide many other features such as
monitoring, analytics, and more.

Here are some best practices for building APIs. Try not to use
passwords and instead use API keys between the client and
the provider. This approach removes the dependency on
needing to maintain user passwords since they are very
dynamic. The number one reason for using keys instead of
passwords is that the keys are much more secure. Most
passwords are no more than eight characters in length because
it is hard for users to remember passwords longer than that. In
addition, many users do not create strong passwords. Using
keys results in a longer and more complex key value, usually
256 characters, and passwords are created by systems instead
of users. The number of combinations that a password bot

212

would need to try to figure out the password for a key value is
many times greater than an eight-digit password. If you have
to store passwords for some reason, make sure they are
encrypted with an up-to-date encryption utility like bcrypt.

A best practice is to avoid sessions and session state to
prevent session hijacking. If you are building RESTful
services the correct way, this should not be hard to
implement. If you are using SOAP instead of REST, then you
will be required to maintain sessions and state and expose
yourself to session hijacking. Another best practice is to reset
authentication on every request so if an unauthorized user
somehow gets authenticated, he is no longer able to access the
system after that request is terminated, whereas if the
authentication is not terminated, the unauthorized user can
stay connected and do even more damage. The next
recommendation is to base the authentication on the resource
content of the request, not the URL. URLs are easier to
discover and more fragile than the resource content. A
common mistake that auditors pick up on is that developers
often leave too much information in the resource content.
Make sure that debug information is not on in production and
also ensure that information describing version numbers or
descriptions of the underlying application stack are excluded
from the resource content. For example, an auditor once
flagged one of our APIs because it disclosed the version of
Apache we were running. Any information that is not needed
by the service consumer should be removed from the resource
content.

Recommendation: Do not roll your own security. Use
industry standards like OAuth. Refrain from using passwords,
always use SSL, encrypt sensitive attributes within the

213

resource content, and only include information in the resource
content that is absolutely necessary. Also evaluate Security as
a Service solutions and API management solutions, and
leverage them where it makes sense within the architecture.

Patch Management

Patching servers applies to the IaaS cloud service model and
the private cloud deployment model. When leveraging IaaS,
the cloud service consumer is responsible for the application
stack and therefore must manage the security of the operating
system, database server, application server, the development
language, and all other software and servers that make up the
system. The same is true for private PaaS solutions. For
regulations that focus on security, like the SSAE16 SOC 2
audit, patching servers must be performed at least every 30
days. Not only do the servers require patching, but the
auditors need to see proof that the patching occurred and a log
of what patches were applied.

There are many ways to manage patching but whatever
method is chosen should rely on automation as much as
possible. Any time manual intervention is allowed there is a
risk of not only creating issues in production but also missing
or forgetting to apply certain patches. A common approach to
patching is to use the golden image method described earlier.
Each unique server configuration should have an image that
has the most current security patches applied to it. This image
should be checked into a source code repository and
versioned to produce an audit trial of the changes and also
allow for rollbacks in case the deployment causes issues.
Every 30 days, the latest golden image should be deployed to

214

production and the old server image should be retired. It is not
recommended to apply security patches to existing servers.
Live by the rule of create new servers and destroy the old.
There are two main reasons for this strategy. First, it is much
simpler and less risky to leave the existing servers untouched.
Second, if major issues occur when the new images are
deployed, it is much easier and safer to redeploy the previous
image than to back software and patches out of the existing
image.

For companies that have continuous delivery in place,
patching is a much simpler undertaking. With continuous
delivery, both the software and the environment are deployed
together, which ensures that deployments always deploy the
most recent version of the golden image. In most continuous
delivery shops, software is deployed anywhere from every
two weeks, to every day, and in some cases, multiple times a
day. In these environments, the servers are being refreshed
frequently, much less than every 30 days. A patching strategy
in this scenario entails updating the golden image at least
once every 30 days, but there is no need to schedule a security
patch deployment because the latest golden image gets
deployed regularly.

Recommendation: Create and validate a golden image that
contains all of the latest and greatest security patches and
check it into the source code repository at least once every 30
days. Automate the deployment process to pull the latest
golden image from the source code repository and deploy
both the new software and the new environment based on the
golden image, while retiring the current production servers
containing the previous version of the golden image. Do not
try to update servers—simply replace them.

215

Logging, Monitoring, and Auditing

Logging refers to the collection of all system logs. Logs come
from the infrastructure, the application stack, and the
application. It is a best practice to write a log entry for every
event that happens within a system, especially events that
involve users or systems requesting access. Logging is
covered in detail in Chapter 10.

Monitoring refers to the process of watching over a system
through a set of tools that provide information about the
health and activity occurring on a system. A best practice is to
implement a set of monitors that observe activity on the
system and look for security risks. Monitoring involves both
looking at real-time activity and mining log files. Monitoring
is covered in Chapter 12. Auditing is the process of reviewing
the security processes and controls to ensure that the system is
complying with the required regulatory controls and meeting
the security requirements and SLAs of the system. Auditing is
covered in Chapter 7.

Summary
The popularity of cloud computing has raised awareness
about the importance of building secure applications and
services. The level of responsibility a cloud service provider
takes on depends on which cloud service model and
deployment model is chosen by the cloud service consumer.
Consumers must not rely solely on their providers for
security. Instead, consumers must take a three-pronged
approach to security by applying security best practices to the

216

applications and services, monitoring and detecting security
issues, and practicing security prevention by actively
addressing issues found by monitoring logs. Providers
provide the tools to build highly secure applications and
services. Consumers building solutions on top of providers
must use these tools to build in the proper level of security
and comply with the regulations demanded by their
customers.

References

Barker, E., W. Barker, W. Burr, W. Polk, and M. Smid (2007,
March). “Computer Security: NIST Special Publication
800–57.” Retrieved from http://csrc.nist.gov/publications/
nistpubs/800–57/sp800–57-Part1-revised2_Mar08–2007.pdf.

Chickowski, E. (2013, February 12). “Database Encryption
Depends on Effective Key Management.” Retrieved from
http://www.darkreading.com/database/
database-encryption-depends-on-effective/240148441.

Hazelwood, Les (2012, July). “Designing a Beautiful
REST+JSON API.” San Francisco. Retrieved from
https://www.youtube.com/
watch?v=5WXYw4J4QOU&list=PL22B1B879CCC56461&index=9.

Kim, G., K. Behr, and G. Spafford (2013). The Phoenix
Project: A Novel About IT, DevOps and Helping Your
Business Win. Portland, OR: IT Revolution Press.

217

Chapter 10

Creating a Centralized
Logging Strategy
The problem with troubleshooting is trouble shoots back.

—Anonymous

Logging is a critical component of any cloud-based
application. As we shift away from the old client-server
architectures to cloud-based distributed architectures,
managing systems becomes more complex. Many
cloud-based systems are built to scale up and down
on-demand. Under the covers, compute resources are
automatically being provisioned and deprovisioned as
workloads spike up and down. The dynamic nature of an
elastic cloud application creates a need to separate the storing
of logging information from the physical servers where the
logs are created so that the information is not lost when the
cloud resources go away.

This chapter will discuss the uses of log files and the
requirements for building a centralized logging strategy.

218

Log File Uses
For those of us building highly distributed systems in the
cloud, having a sound logging strategy is a critical component
of building a secure and manageable solution. Log files have
very useful information about the behavior of database
activity, user access, error and debugging information, and
much more. In a distributed environment where a company
may have tens, hundreds, or even thousands of servers that
make up its overall solution, finding data in logs is like
finding a needle in a haystack without a centralized logging
solution.

Log files have many uses. Here is a core list of uses of log
files in most systems:

• Troubleshooting. Debugging information and error
messages are collected for analyzing what is
occurring in the production environment.

• Security. Tracking all user access, both successful
and unsuccessful access attempts. Intrusion detection
and fraud detection analysis depends on collecting
logs.

• Auditing. Providing a trail of data for auditors is
mandatory for passing audits. Having documentation
of processes and controls is not enough to pass an
audit. Those documents need to be backed up with
real data from the logs.

• Monitoring. Identifying trends, anomalies, thresholds,
and other variables proactively allows companies to
resolve issues before they become noticeable and
before they impact end users.

219

The adoption of the cloud has led to the much-needed
awareness of application and system security, which
unfortunately had not been a high enough priority in many
enterprises in the past. Many companies felt secure behind
their firewalls but in reality they often had huge security
vulnerabilities due to the lack of application security. Now
with security in the forefront, companies building solutions in
the cloud are rightfully being held to the highest standards,
such as ISO 27001, SSAE-16, PCI, and others. Anybody who
has ever been through one of these audits knows that locking
down access to production servers is a must. In order to do
that a company must have a logging strategy that centrally
maintains the logs on a separate server farm so that the
administrators can remove developer access from all
production servers. Without a logging strategy, a company
will have to allow developers and operations personnel to
access production servers, which will get flagged in an audit.
This is an extremely risky situation both from a security
standpoint and because of the possibility of human error.

Logging Requirements
There are two key requirements for architecting a centralized
logging strategy.

Direct Logs to an Isolated Storage
Area

The first requirement is to direct all logs to a redundant and
isolated storage area. In an Infrastructure as a Service (IaaS)

220

implementation, a design for a centralized logging solution
might look like that depicted in Figure 10.1.

Figure 10.1 Centralized Logging Strategy

In this design, all logs are directed to syslog instead of being
written directly to disk on the local machine. Syslog on each
server is piped directly to a dedicated logging server farm.
The logging server farm should be redundant across data
centers, or availability zones (AZ) as they are called on
Amazon Web Services. Once the data arrives on the logging
server farm there are a number of logging solutions, both
open source and commercial, that transform the data into a
NoSQL database. These tools also provide a rich user
interface that allows the end user to search the logs and
schedule jobs, trigger alerts, create reports, and much more.
This strategy provides the following benefits:

• Allows the administrators to block all developer
access from all servers in the production

221

environment. Developers can only access production
logging servers and only through a secure user
interface (UI) or through application programming
interface (API) access.

• Auditing becomes much simpler since all logs are in
one place.

• Data mining and trend analysis become feasible
because all logging data is stored in a NoSQL
database.

• Implementing intrusion detection becomes simpler
because tools can be run on top of the central logging
database.

• Loss of log data is minimized because data is not
stored on local disk of servers that may be
deprovisioned on the fly.

For applications built on top of IaaS, there are a few options.
If the application team wants to build and manage its own
logging solution, it will need to stand up a logging server (or
two or more for redundancy) and configure the operating
system to use a command like syslogd for Linux-based
systems, log4J for Apache, or Log4Net for .NET. These are
just a few of many tools for assisting with logging. Once the
logs are all routed to a central repository, there are many open
source and commercial products that can be used that sit on
top of the central repository and provide easy-to-use
searching, job scheduling, event processing, and notification
capabilities for sifting through log data.

Another option is to leverage a Software as a Service (SaaS)
logging solution. In this model the logs are sent to a
cloud-based centralized logging Database as a Service
solution. SaaS logging solutions have many advantages. First,

222

the team no longer has to build, manage, and maintain
logging functionality, which is usually not a core competency.
Second, the logs are maintained off-site on a scalable, reliable
third party’s cloud infrastructure. Third, if any part of the data
center goes down, the logs service will not be impacted. If a
company is leveraging more than one cloud platform (for
example, AWS and Rackspace), SaaS logging solutions are
even more attractive because the log files from the different
cloud service providers’ (CSPs’) cloud platforms can be
managed and maintained in one place.

Many Platform as a Service (PaaS) solutions are integrated
with the most popular logging SaaS solutions, like Loggly
and Logentries, which provide API access to the central
logging solution. Instead of building and managing logging
services, a PaaS user can simply pay for what it uses. Logging
add-ons, or plug-ins, as these are often called on PaaS
platforms, are one of the reasons why PaaS is so attractive to
developers. Developers can simply turn on plug-ins like
logging, monitoring, Database as a Service, message queues,
payment services, and more without having to write all of that
code or figure out how to integrate with these solutions.

Some companies may choose to manage the logs themselves
because they do not want any of their data to leave their
premises. These companies are trading control for
speed-to-market since they are taking on much more work
than they would have to do had they gone with the SaaS
solution. Another advantage of leveraging a SaaS solution for
logging becomes clear when the CSP has an outage. If a
company is managing the logging system on that CSP’s
infrastructure, the logging solution might be down, as well.
Without access to the logs it will likely be incredibly difficult

223

to troubleshoot the issues that the outage is causing. In the
SaaS model, all the logs would be available during the CSP
outage.

Standardize Log Formats

The second key requirement of a centralized logging strategy
is to standardize all log formats, naming conventions, severity
levels, and error codes for all messages. Storing all logs in a
central location is a good start, but if the actual log messages
are not designed in a standard way, the value of the data is
very limited. A best practice is to build a utility service for
writing application messages with a common log message
format. In addition, APIs should be designed to use standard
http error codes and leverage a standard like the RFC 5424
Syslog protocol to standardize on severity levels. See Table
10.1.

Table 10.1 RFC 5424 Severity Codes

Source: tools.ieft.org/html/rfc5424.

Code Severity
0 Emergency, system is unusable
1 Alert: action must be taken immediately
2 Critical: critical conditions
3 Error: error conditions
4 Warning: warning conditions
5 Notice: normal but significant condition
6 Informational: informational messages

224

Code Severity
7 Debug: debug-level messages

Finally, create a common vocabulary for error descriptions
including tracking attributes such as date, time, server,
module, or API name and consistently use the same terms.
For example, if a system has numerous areas where IDs are
being authenticated, always use the same terms, such as
authentication failed or access denied. If the same terms are
always used, then a simple search from the logging tools will
provide consistent results. One way to enforce consistent
naming is to use a database or XML data store that the
developers can pull from. This eliminates the chance that
developers use different descriptions, which would diminish
the value of the logging data. Also, by storing these attributes
in a data store, changes can be made to the data without the
need for a build or a deployment.

Standards are crucial for optimizing searches and producing
consistent results. The more that the data contained in log
messages is standardized, the more automation can be
designed. Instead of being reactive and paying people to
search for anomalies in the logs, jobs can be run to detect
patterns and alert the appropriate personnel if the log content
is inconsistent. Audit reports can be automatically generated.
Trend reports can be derived, detecting common issues.
Statistics can be tied to deployments to proactively analyze
the quality of each deployment. There is no end to the number
of proactive insights that can be programmed if all log data is
standardized. This is a key strategy for increasing automation
and proactive monitoring, which leads to higher service level
agreements (SLAs) and customer satisfaction.

225

AEA Case Study: Logging Strategy Considerations
In assessing its logging strategy, Acme eAuctions (AEA) took
the following items into consideration:

• Lock all developers out of the production servers for
security and risk reasons.

• Need the ability to break out logs by actor (channel
partner, App Store developer, affiliate network,
AEA).

• AEA users can see the logs of all actors, but external
actors can only see their own logs.

• Standard logging and error messages must be created
and published to external actors.

• Monitoring services will be mining log data looking
for patterns to raise alerts and warnings.

• External partners building on top of APIs will need
log access for troubleshooting.

Based on these requirements and the fact that logging is not a
core competency of AEA, AEA has chosen to evaluate
cloud-based logging solutions. The logging solutions will
need to support API access so the monitoring solutions can
access the data in the log files. By leveraging a centralized
logging solution, all production servers can be locked down
so that no developers, internal or external, will have any
access to the servers. External partners will be given restricted
access so that they can only see their own data. AEA will be
able to configure the logging solution and put it in place much
quicker than if it had to build it itself. This leaves AEA more
time to focus on its core, which is to build a great user
experience for auction enthusiasts and provide a highly
scalable and reliable website.

226

Summary
Log files are a critical part of any cloud-based system.
Making logs easily accessible, consistent, meaningful,
searchable, and centrally managed is a core strategy of any
cloud implementation. Logging is often an afterthought in
many systems. It should be thought of as a critical component
required for security and SLA management and should be
designed in from the start. Logging is a vital piece of
plumbing for IaaS, PaaS, and SaaS cloud service models. As
with the construction of any house or building, plumbing is a
fundamental piece of the blueprint. No builder would add
pipes after hanging the drywall. No cloud application should
wait until the end to implement logging.

Reference

Gerhards, R. (2009). “The Syslog Protocol.” Retrieved from
http://tools.ietf.org/html/rfc5424.

227

Chapter 11

SLA Management
If you think good architecture is expensive, try bad
architecture.

—Brian Foote and Joseph Yoder

A service level agreement (SLA) is an agreement between the
cloud service provider (CSP) and the cloud service consumer
(CSC) that sets the expectation of the level of service that the
CSP promises to provide to the CSC. SLAs are critical for
cloud-based services because the CSPs take on
responsibilities on behalf of the consumer. Consumers need
assurance that the CSP will provide services that are reliable,
secure, scalable, and available. There are two sides to this
coin when it comes to SLAs. On one side, a company
building cloud services on top of an Infrastructure as a
Service (IaaS) or Platform as a Service (PaaS) provider has to
consider the SLAs of its CSPs. The other side of the coin is
the company needs to establish SLAs that can satisfy the
needs of its customer base. This chapter reviews steps for
defining SLAs.

228

Factors That Impact SLAs
SLAs in the cloud can be rather complex, especially when
multiple CSPs are involved in the makeup of a cloud service.
It is not uncommon that a company builds a solution that is
made up of cloud services of each cloud service model. For
example, our fictitious start-up, Acme eAuctions (AEA), uses
an IaaS CSP to provide the infrastructure layer, a PaaS
provider to provide the application stack layer, and a
collection of Software as a Service (SaaS) solutions and
third-party APIs for various core utility functions. Each one
of these CSPs that make up the overall AEA platform has its
own SLAs. AEA must take all of those SLAs into
consideration before committing to service agreements with
its customers.

The first step in defining SLAs is to determine what the
customers’ expectations are. Factors that influence customer
expectation are customer characteristics, criticality of the
services provided, and the type of interactions between the
provider and the consumer. There are many customer
characteristics that influence defining SLAs, for example:

• Consumer versus enterprise customers
• Paying versus nonpaying customers
• Regulated industry versus nonregulated industry
• Anonymous versus personally identifiable

Many cloud services offered directly to consumers for
non-mission-critical services do not provide SLAs around
performance, uptime, and reliability. The terms of services
are heavily weighted toward protecting the CSP and offer the

229

services “as is” to consumers. Consumers must accept those
terms to participate. At most, the CSPs will promise to apply
best efforts to secure the consumer’s data and maintain its
privacy.

The stronger the SLA, the more it costs to manage and
maintain it. Therefore, nonpaying customers are usually
offered lower SLAs than paying customers. As the old saying
goes, “You get what you pay for.” Some cloud services offer
free-trial services for customers to try before they buy. Often,
these “freemium” services are run on the lowest cost
machines and have limited functionality. The goal of the CSP
is to spend as little as possible in an effort to let the consumer
take the service for a test ride. Once the customer moves to a
paid tier, higher service levels apply.

Customers who require services in a regulated industry
require much stronger SLAs than those in a nonregulated
industry. Health care, banking, insurance, government, retail,
and other industries require strong SLAs around performance,
uptime, security, privacy, compliance, and more. Customers
using services like photo sharing, streaming video, and social
media are usually only offered SLAs around privacy.

The amount of personal information and the type of
information that a cloud service requires also has a large
influence on SLAs. Some cloud services offer functionality to
the general public for free and therefore provide no SLAs.
Other cloud services may gather personally identifiable
information (PII) like biometric data, Social Security
numbers, credit card information, and other attributes that are
heavily regulated. If PII data is collected, high levels of
security and privacy SLAs are required.

230

The criticality of the service is a key factor in defining SLAs,
as well. Social media services are not mission critical.
Nobody dies if Twitter is down for 10 minutes. A company
delivering a cloud-based point-of-sale (POS) system must
deliver extremely high SLAs because the retailer leveraging
the POS solution could lose millions of dollars if it cannot
ring up sales across all of its stores. Any service involving
financial transactions like online banking, mobile payments,
and e-commerce will require very high SLAs. The impact of
poor service levels for these types of businesses is substantial.
Mission-critical services require the highest SLAs.

It is important to note that a CSP can offer different SLAs for
different parts of its products. For example, I worked for a
start-up that built a Platform as a Service for executing digital
incentives across a large network of retailers. There were four
distinct parts of the platform: transaction processing, a
business-to-consumer (B2C) component, a
business-to-business (B2B) component, and application
programming interfaces (APIs). Each part of the platform had
very different requirements. The transaction processing was
the most critical part of the platform. It connected retailer
POS systems to our platform in the cloud in real time. When a
consumer shopped at a grocery store, the transaction was sent
out of the store to our cloud-based redemption engine, which
determined if any digital coupons could be applied to the
order. It returned its response to the POS in subseconds, and
the POS system deducted the digital coupons from the order
and generated the receipt. The SLAs for this part of the
platform were incredibly high because any delay or outage
could cost the retailer substantial losses in revenue and create
customer satisfaction problems. The B2C platform also had to
handle millions of transactions a day across the globe. The

231

B2B site, on the other hand, serviced fewer than 100
customers a day and was responsible for loading content into
the platform. If the site was down, it did not impact the POS
system. The only impact was that new offers could not be
added and existing offers could not be altered. The impact
and performance requirements of the B2B site were much less
critical than the transaction processing and therefore the SLA
was lower.

Once the customer characteristics have been identified and
the criticality of each component of the architecture has been
assessed, the next step is to take an inventory of all of the
actors involved in both providing and consuming the cloud
services. The SLA of every CSP involved in building the
cloud solution should be reviewed and a risk assessment
should be performed. For example, if the solution is being
built on Rackspace, the company should understand
Rackspace’s SLAs, and its track record performing against
those SLAs, and devise a strategy in the event that Rackspace
has an outage. If the cloud service is critical, like the
transaction processing service of the digital incentive
platform described previously, the architecture will need to
account for a fail-over plan if the CSP fails. In the case of the
digital incentive platform, the approach taken was to invest
heavily in building full redundancy of every layer of the
architecture across multiple Amazon Web Services (AWS)
availability zones. It was the SLAs that drove that design
decision. Our customers demanded that level of service,
which justified the investment.

SLAs can drive the cloud service model and cloud
deployment model decisions. For example, the SLA for the
uptime of the transaction processing module of our digital

232

incentive platform was extremely high and the average
monthly response time metric for a transaction was so low
that using a PaaS solution was out of the question for two
reasons. The first reason was that we needed to have control
over the database, the application server, and the operating
system to maximize performance and could not rely on a
PaaS to meet our performance SLAs. The second reason was
that if the transaction processing module did not meet the
high uptime required by the SLAs, the retailers would likely
terminate the contract. To mitigate that risk we could not
afford to be at the mercy of a PaaS solution outage. Some
companies under those same constraints might choose to go
with a private cloud for that same reason. We felt that with
multiple availability zones in AWS, we could meet our SLAs
even with a dependency on a public IaaS vendor. The end
result was that we never missed a transaction during any
AWS outage. Had we leveraged a public PaaS like Heroku
and been able to meet the performance metrics, we would
have missed some transactions because Heroku has had some
outages, and when they occurred there would have been
nothing we could have done except wait for Heroku to fix its
issues. For the B2B application that might be acceptable, but
for the transaction processing it would have been a
showstopper.

Consumer expectation is a key factor in determining SLAs.
There is a drastic difference in consumer expectation between
a social media site like Reddit and an enterprise e-mail
solution like Gmail. Many social media sites do not even
offer any SLAs around performance and availability. At most
they will define terms of service and assure users that they
will do their best to protect consumers’ personal data. Most of
the legal language in the terms of service for social media

233

sites is geared more toward protecting the provider than
protecting the consumer. For enterprise solutions, it is quite a
different story. Enterprises have an expectation that CSPs will
provide high-performance SLAs, usually with an uptime of at
least 99 percent but usually higher.

Defining SLAs
A company can be both a cloud consumer and a cloud
provider. For example, a consumer of an IaaS cloud service
provider builds a SaaS solution and becomes a cloud provider
for its customers. In this section, the SLAs that are being
discussed are for companies that build solutions on public,
private, or hybrid clouds, not vendors like AWS, Rackspace,
Microsoft, and others that provide IaaS and PaaS solutions.

The following list shows the types of metrics-based SLAs that
are common in contracts between cloud providers and
enterprise cloud consumers:

• Overall uptime of application/service
• Page-load times
• Transaction processing times
• API response times
• Reporting response times
• Incident resolution times
• Incident notification times

Tracking and reporting on metrics-based SLAs are
accomplished through a combination of logging and
monitoring. In Chapter 10, we discussed strategies around
collecting log information in a central repository and how to

234

make the logging data relevant by using standard formats,
naming conventions, and incident codes. Chapter 12,
“Monitoring Strategies,” will discuss strategies for
monitoring and generating SLA metrics and reports as well as
other useful information.

From a regulatory, security, and privacy perspective, the
following list shows common requirements that enterprise
cloud service consumers demand in contracts from the
provider of SaaS and PaaS solutions:

• Security and privacy safeguards
• Published incident response plan (incident retainer

also requested on occasion)
• Web vulnerability scans and reports
• Published disaster recovery plans
• Safe harbor agreement
• Data ownership declarations
• Backup and recovery processes document
• Source code escrow

Enterprise customers expect monthly reporting of
metrics-based SLAs and often request the right to perform
their own annual audit to track security and regulatory-related
SLAs. In Chapter 7 we discussed the controls and processes
around audit controls. A best practice is to create a document
that summarizes all of the security, privacy, and regulatory
controls that are in place and provide that to customers on
request. Included in that document is a list of all certifications
from the various past audits, such as SSAE16, HIPAA, and so
on. Also be prepared to provide audit reports, web
vulnerability scan reports, monthly metrics reports, and any

235

other artifacts that support ongoing compliance with the SLAs
contained in contracts with customers.

For the IT tasks required, a company should create a separate
work stream with its own roadmap. There is simply too much
work involved to build all of this up front. In the name of
minimal viable product (MVP), the product team must plan
which user stories are the highest priority and incrementally
deliver these user stories over time. For example, if it is
January and the expectation is that the product will pass a
specific audit by November, there is no need to get all of the
security and regulatory stories in the first few sprints and
sacrifice core business functionality that may attract
additional customers.

The IT user stories are a combination of application
development and systems administration tasks. The
application developers have to build the user stories that come
out of the design sessions on topics such as security, data
considerations, logging, monitoring, and so forth. Web-based
applications need to be secured against web vulnerabilities
and critical data elements must be encrypted for security and
privacy. A best practice for building secure web applications
is to leverage web frameworks and keep those frameworks
current. Examples of web frameworks are Django for Python,
.NET Framework for Microsoft, Zend Framework for PHP,
Ruby on Rails, and Struts for Java. There are many more
frameworks that can be used, but the key is to stay current
with the version of the chosen framework because as new
vulnerabilities arise, these frameworks get patched to address
the new vulnerabilities. Using a framework that is many
versions behind may not protect against the more recent
exploits. Using a framework does not ensure that the web

236

application is secure, but it does enforce a lot of best practices
for securing web applications for many known exploits. I
once helped a start-up put together a cloud audit strategy.
When we ran the web vulnerability scan, the web application
had very few vulnerabilities. Being a young start-up, the
product team focused very little on security, but because it
leveraged a web framework, the company was protected
against most of the top exploits.

The operations team plays a huge role in SLA and regulatory
management. As we discussed in Chapter 9, centralization,
standardization, and automation are keys to securing systems
and passing audits. Operations is responsible for a lot of the
automation and policy enforcement that goes into SLA
management. We will discuss this more in Chapter 14,
“Leveraging a DevOps Culture to Deliver Software Faster
and More Reliably.”

Managing Vendor SLAs
The top cloud service providers promise a wide variety of
SLAs. For most well-established IaaS and PaaS providers,
uptime SLAs ranged from 99.9 percent to 100 percent. One
major PaaS solution, Heroku, does not provide an uptime
SLA, which is astounding in this day and age. A review of the
top SaaS solutions, like Salesforce.com, Concur, and others,
resulted in no published SLAs at all. The lower down the
cloud stack we go, the more demand there is for higher SLAs.
One reason why public PaaS solutions are struggling to
convince enterprises to use their services is because their
SLAs do not meet enterprise standards. This is also why there

237

is a huge increase in interest recently for private PaaS
solutions within the enterprise. Companies are willingly
taking on the management of the infrastructure and the PaaS
software so that they can manage the SLAs themselves, while
providing PaaS capabilities to the development teams for
increased speed-to-market.

Even when vendors have published SLAs, the value these
SLAs have for the customer is often limited to the customer
getting a refund or a credit if a significant outage occurs.
Regardless of the amount of that refund, it does nothing to
repair the collateral damage that the outage may have caused
to the business and its customers. This is precisely why so
many pundits declare that cloud SLAs are useless. For
example, Amazon, Google, Microsoft, and Force.com all
have had their outages. Some consumers have survived these
outages and some have gone down along with their vendor.
When the vendor has a service disruption that disrupts the
consumer’s services, too, usually the customer is too locked
into the cloud service to do anything other than get
compensated for the disruption—if they can even get that. For
critical applications, make sure the vendor has a good track
record living up to its SLAs. This dependency on cloud
service providers and their SLAs is unsettling to many
companies and their default reaction is often to build their
own private clouds. However, most cloud service providers
can provide equivalent or better service levels than many
individual consumers can provide for themselves.

Before writing off public clouds or hosted private clouds
because of concerns with cloud vendors’ SLAs, consider the
trade-offs. The core competency of companies like Amazon,
Rackspace, and Terremark is running data centers. They have

238

invested millions of dollars and have some of the best people
in the world working on these data centers. By choosing to
build their own private cloud on their own data centers to
satisfy the desire to have more control, consumers are betting
that they can provide higher SLAs than the cloud providers.
In exchange, they give up much of the benefits of cloud
computing, such as rapid elasticity, speed-to-market,
reduction of capital expenses, and more. Certain companies
have a business case or a set of priorities that may justify it,
but some companies simply default to private clouds out of
personal preference rather than what’s best for the business.

What is important to understand about SLAs is that these
service levels only represent the uptime of the infrastructure
(for IaaS) or the platform (for PaaS); it is up to the
engineering teams to build highly available applications on
top of them. In the case of AWS, if a company only leverages
one zone, the best it can hope for is a 99.95 percent SLA
because that is all AWS offers. However, companies can
achieve much greater SLAs on AWS if they architect across
zone or across region redundancy.

An interesting fact is that many of the major SaaS players get
away without publishing SLAs. My theory is that a lot of
them were early pioneers in this space and built up a large
installed base before many customers started to demand high
SLAs in the request-for-proposal (RFP) process. It would be
very hard for a new SaaS company selling cloud services into
enterprises to have much success without establishing SLAs.
Many would never get a shot at an RFP because consumers
are starting to demand more security and SLAs from their
cloud providers. For companies building mission-critical
SaaS solutions today, it should be expected that customers

239

will be requiring an SLA of at least 99.9 percent. The more
mission critical the service, the higher the customer
expectation will be for that number.

All of the major cloud vendors, whether they are IaaS, PaaS,
or SaaS, have made it a priority to become compliant with
most of the major regulations, such as SSAE 16, SAS 70,
HIPAA, ISO, PCI, and others, that are applicable to the
services being provided. Most vendors would never be
considered by enterprise customers if they did not have these
certifications posted on their websites. Most enterprises must
comply with these same regulations and to accomplish that
the vendor solutions they choose must also comply with the
same regulations or be exempt from those regulations.

AES Case Study: Service Level Agreements
Acme eAuctions (AEA) had never published SLAs before
because it had a closed, proprietary auction site. The new site
will be a PaaS that third parties build solutions on. In order to
attract customers willing to pay transaction fees for executing
auctions and provide applications in the App Store, AEA will
have to guarantee service levels. After discussing SLAs with
the product team, AEA decided to divide the system up into
components and provide SLAs for each component.

• Seller services—9.9 percent uptime, recovery time of
one day

• Buyer services—99.9 percent uptime, recovery time
of 15 minutes

• API layer—99.9 percent uptime, performance
guarantee of one second or less, recovery time 15
minutes

240

• App Store—99 percent uptime, recovery time seven
days

• Published privacy policy
Here is how the team arrived at these numbers. First, it
recognized that different components have different uptime
and performance requirements because of their impact. For
example, nothing is more critical than processing auctions,
which is why the buyer services have the strictest SLAs. The
API layer provides access to buyer services, so it aligns with
buyer services and has an added performance requirement of
one second that many of the company’s potential customers
were requiring in their contracts. The seller services are
important but not quite as critical as the buyer services. When
the seller services are down or not performing, it impacts
adding new content to the site, but existing auctions can still
occur. The App Store is where developers can add
applications to assist buyers and sellers with a variety of
tools. Even though it generates some revenue, it is not
mission critical, so a lower SLA and recovery time are
provided.
Terms and conditions are published on the website and
consumers agree to those terms when the sign up. For
third-party partners, AEA has an online agreement of terms
that they must sign. However, large, influential customers,
like a large electronics manufacturer, may require more
stringent SLAs. PCI DSS is out of scope since AEA is
off-loading payments and seller fees to third parties.
However, it is possible that a large customer may require a
security audit such as an SSAE 16 or SOC2 audit. Until
someone asks for it, there is no need to add it, especially with
a looming due date.

241

Summary
SLAs are a pledge from a service provider to a service
consumer that specific performance metrics will be met, a
certain level of security and privacy will be upheld, and if
required, the provider has been certified for specific
regulations. The more mission critical the service being
provided, the more SLAs the cloud service provider will be
required to deliver to the cloud service consumer. Cloud
services targeting enterprise customers will usually have strict
SLA requirements, while cloud services targeting consumers
will usually provide basic terms of service that protect the
cloud service provider more than the cloud service consumer.

References

Greer, M. (2012, April 10). “Practical Guide to Cloud Service
Level Agreements.” Retrieved from
http://www.cloudstandardscustomercouncil.org/
PGCloudSLA040512MGreer.pdf.

Diaz, A. (2011, December 14). “Service Level Agreements in
the Cloud: Who Cares?” Retrieved from
http://www.wired.com/insights/2011/12/
service-level-agreements-in-the-cloud-who-cares/.

Myerson, J. (2013, January 7). “Best Practices to Develop
SLAs for Cloud Computing.” Retrieved from
http://www.ibm.com/developerworks/cloud/library/
cl-slastandards/.

242

Chapter 12

Monitoring Strategies
Real-time monitoring is the new face of testing.

—Noah Sussman

Most cloud services are built to be always on, meaning the
customer expects to be able to use the service 24 hours a day,
365 days a year. A considerable amount of engineering is
required to build cloud services that provide the high levels of
uptime, reliability, and scalability required to be always on.
Even with a great architecture, it still takes a proactive
monitoring strategy in order to meet the service level
agreements (SLAs) required to deliver a system that does not
go down. This chapter discusses strategies for monitoring
cloud services.

Proactive vs. Reactive
Monitoring
Many IT shops are accustomed to monitoring systems to
detect failures. These shops track the consumption of
memory, CPU, and disk space of servers and the throughput
of the network to detect symptoms of system failures. Tools
that ping URLs to check if websites are responding are very

243

common, as well. All of these types of monitors are reactive.
The tools tell us either that something is failing or that
something is about to fail. Reactive monitoring focuses on
detection. There should be a corresponding monitoring
strategy for prevention.

The goal of proactive monitoring is to prevent failures.
Prevention requires a different mind-set than detection. To
prevent failures, we first must define what healthy system
metrics look like. Once we define the baseline metrics for a
healthy system, we must watch patterns to detect when data is
trending toward an unhealthy system and fix the problem
before our reactive monitors start sounding the warning bells.
Combining both reactive and proactive monitoring is a best
practice for implementing cloud services that must always be
on. Proactive or preventive monitoring strives to find and
resolve issues early, before they have a large impact on the
overall system and to increase the odds that the issues are
found and corrected before the customer is impacted.

What Needs to Be
Monitored?
The purpose of monitoring is to help track that systems are
behaving in-line with their expectations. Back in Chapter 11,
“SLA Management,” we discussed that SLAs set an
expectation between the cloud service provider and the cloud
service consumer regarding the level of service that will be
provided. To ensure that these SLAs are met, each SLA must
be monitored, measured, and reported on. There are

244

metrics-based SLAs such as response time and uptime, and
there are SLAs focusing on processes around privacy,
security, and regulations. Monitoring should cover all types of
SLAs.

But SLAs are only part of the story. Many cloud-based
services are distributed systems composed of many parts. All
parts of the system are a point of failure and need to be
monitored. Different people within the organization may need
different information about the system in order to ensure that
the system functions properly. For example, a front-end
developer might be concerned with page-load times, network
performance, the performance of the application
programming interfaces (APIs), and so forth. The database
architects may want to see metrics about the database server
in the areas of threads, cache, memory, and CPU utilization in
addition to metrics about the SQL statements and their
response times. The system administrators may want to see
metrics such as requests per second (RPS), disk space
capacity, and CPU and memory utilization. The product
owners may want to see how many unique visits per day, new
users, cost per user, and other business-related metrics.

All of these metrics provide insights to determine if the
system is behaving correctly and if the system is causing the
desired behaviors from the end users. A system can be
running flawlessly from a technology standpoint, but if the
customer usage is consistently declining, there might be
something drastically wrong in the areas of usability or
product strategy. Metrics are also critical for accessing the
success of each deployment. When a new version of software
is deployed, it is critical to watch key system metrics and
compare them against the baseline to see if the deployment

245

has a negative impact on the overall system. For systems that
use switches to turn features on and off, tracking metrics
post-deployment can help discover when a switch is
inadvertently set to the wrong value. This preventive measure
can allow for a mistake to be quickly fixed before the error
becomes problematic. Without a preventive approach, a
simple issue like an erroneous configuration setting might not
be found until a long time later, when reporting data shows a
large delta in the data or, even worse, by the customers
discovering it first.

A number of categories should be monitored:

• Performance
• Throughput
• Quality
• Key performance indicators (KPIs)
• Security
• Compliance

Monitoring also occurs within the different layers of the cloud
stack:

• User layer
• Application layer
• Application stack layer
• Infrastructure layer

In addition, there are three distinct domains that need to be
monitored:

1. Cloud vendor environment
2. Cloud application environment
3. User experience

246

Let’s briefly touch on each one of these areas. The intent of
this chapter is to give a broad overview of some basic metrics
and best practices. For a more in-depth commentary on
measuring metrics for scaling systems, I recommend Cal
Henderson’s book, Building Scalable Websites, in which he
explains how the team at Flickr scaled out the company’s
famous photo-sharing website.

Monitoring Strategies by
Category
There are many categories of information that can be
monitored. In this chapter, we will discuss monitoring
strategies for measuring performance, throughput, quality,
KPIs, security, and compliance. Each company will have a
unique set of categories that are relevant to its business model
and the target application. The categories discussed here are
the ones that are typical in any cloud application or service.

Performance

Performance is an important metric within each layer of the
cloud stack. At the user layer, performance metrics track
attributes about how the users interact with the system. Here
are some examples of user performance metrics:

• Number of new customers
• Number of unique visitors per day
• Number of page visits per day
• Average time spend on site

247

• Revenue per customer
• Bounce rate (percent of users who leave without

viewing pages)
• Conversion rate (percent of users who perform

desired action based on direct marketing)

The goal of these metrics is to measure the behavior of the
customers using the system. If these numbers decrease
drastically from the baseline numbers after a deployment,
there is a good chance either that there is an issue with the
new code or that the new features were not well received by
the customers.

Sometimes the end user is not a person but another system.
Similar metrics can be used to ensure that the system and its
users are behaving in the expected manner.

• Number of new users
• Number of unique users per day
• Number of calls per user per day
• Average time per call
• Revenue per user

In this case a user represents another system. If the
expectation is that the number of users is fixed or static and
the metric shows the number is decreasing, then there is likely
a problem preventing the system from getting access or the
requests are failing. If the number of users goes up, then there
might be a security issue and unauthorized accounts are
gaining access. If the number of users is dynamic, then a
decline in any of the metrics might be evidence that there are
issues with the system.

248

At the application layer, performance measures how the
system responds to the end user, whether that user is a person
or another system. Here are some common performance
metrics that are often tracked:

• Page-load times
• Uptime
• Response time (APIs, reports, queries, etc.)

These metrics might be tracked and aggregated at different
levels. For example, a system may be made up of a
consumer-facing web page, a collection of APIs, an
administrator portal for data management, and a reporting
subsystem. It would be wise to track these metrics for each
one of the four components separately because they likely all
have unique performance requirements and SLAs. Also, if
this system is being delivered as a Software as a Service
(SaaS) solution to numerous clients, it would be wise to track
these metrics uniquely by client, as well.

At the application stack layer, the metrics are similar, but
instead of tracking the application performance, now we are
tracking the performance of the underlying components of the
application stack, such as the operating system, application
server, database server, caching layer, and so on. Every
component that makes up this layer needs to be monitored on
every machine. If a MySQL database is made up of a master
node with three slave nodes, each node needs to have a
baseline established and needs to be tracked against its
baseline. The same applies for the web servers. A 100-node
web server farm needs each node to be monitored
independently. At the same time, servers need to be
monitored in clusters or groups to compute the metrics for a

249

given customer. For example, if each customer has its own
dedicated master and slave databases, the average response
time and uptime is the aggregation of performance metrics for
all of the servers in the cluster.

At the infrastructure layer, the metrics apply to the physical
infrastructure, such as servers, networks, routers, and so on.
Public Infrastructure as a Service (IaaS) providers will host a
web page showing the health of their infrastructure, but they
only give red, yellow, and green indicators, which indicate
whether the services are functioning normally, are having
issues, or are completely down.

Throughput

Throughput measures average rate at which data moves
through the system. Like performance, it is important to
understand the throughput at each layer of the cloud stack, at
each component of the system, and for each unique customer.
At the user layer, throughput measures how many concurrent
users or sessions the system is processing. At the application
layer, throughput measures how much data the system can
transmit from the application stack layer through the
application layer to the end user. This metric is often
measured in transactions per second (TPS), RPS, or some
business-related metric like click-throughs per second,
requests per second (RPS), or page visits per second.

At the application stack layer, measuring throughput is
critical in diagnosing issues within the system. If the TPS at
the application layer is lower than normal, it is usually due to
a reduction in throughput to one or many components within

250

the application stack. Common monitoring solutions like open
source Nagios or SaaS products like New Relic are
commonly used to gather various metrics on the application
stack components. These tools allow the administrators to set
alerts and notifications when certain thresholds are met and
provide analytics for spotting trends in the data. At the
infrastructure layer, throughput measures the flow from
physical servers and other hardware and network devices.

Quality

Quality is a measure of both the accuracy of information and
impact of defects on the end user in the production
environment. The key here is the emphasis on the production
environment. Having 1,000 defects in the quality assurance or
development environments is meaningless to an end user and
to the SLAs of a system. It is the number of defects and the
impacts they have on the applications and the end users that
matter. One hundred defects in production might sound
horrible, but if a majority of them have no or minimal impact
on the end user, then they have less impact on the
measurement of quality. I bring this up because I have seen
too many companies use a quality metric to drive the wrong
results. Quality should not be measured in bugs or defects. If
it is, the team spends valuable time correcting many defects
that do not have an impact on the overall health of the system
and the end user’s perception. Instead, quality should focus
on accuracy, the correctness of the data that is being returned
to the end user; the error rates, the frequency in which errors
occur; deployment failure rates, the percentage of time
deployments fail or have issues; and customer satisfaction,

251

the perception of quality and service from the voice of the
customer.

To measure quality, standardization of data collection is
required. As was mentioned in Chapter 10, error codes,
severity level, and log record formats should all be
standardized and common error and logging APIs should be
used to ensure that consistent data is sent to the central
logging system. Automated reports and dashboards that mine
the data from the logging system should generate all of the
relevant key metrics, including quality, error rates, error
types, and so forth. Thresholds should be set that cause alerts
and notifications to be triggered when the quality metric
reaches the alert threshold. Quality must be maintained at
every layer within the cloud stack.

At the user layer, quality measures the success and accuracy
of user registration and access. If an unacceptable number of
users fail the registration process, somebody must resolve the
issue quickly. Sometimes the quality issue is not a defect but
rather a usability issue. Users may require more training or
the user interface may be too cumbersome or confusing. At
the application layer, quality is in the eye of the beholder, also
known as the end user. At this layer we are concerned with
the defect types. Errors related to erroneous data, failed
transactions, and 400- to 500-level http response codes are
typically the culprits that cause invalid results and unhappy
customers. These errors must be tracked for each API and for
each module within the system. At the application stack layer,
errors need to be logged and tracked for each component and
the same applies to the physical infrastructure within the
infrastructure layer.

252

KPIs

Key performance indicators are those metrics that tell us if the
system is meeting the business goals. Some examples of KPIs
are:

• Revenue per customer
• Revenue per hour
• Number of incoming customer calls per day
• Number of jobs completed per day
• Site traffic
• Shopping cart abandonment rate

KPIs are unique to each company’s business model. Each
company invests in systems to achieve its business goals.
Monitoring and measuring KPIs is a best practice for
proactively detecting potential issues. Detecting KPIs
trending in the wrong direction allows the team to proactively
research root causes and potentially fix the issue(s) before too
much damage is done. It is also important to detect when
KPIs are trending in a positive direction so the team can
figure out what the catalyst is so the team can understand
what drives the appropriate behaviors.

KPIs are measured at the application layer. Typically, the
product team establishes what those key metrics are. IT teams
often establish their own KPIs, as well. In Chapter 14, we will
discuss how metrics are used to proactively monitor the
health of the underlying architecture and deployment
processes.

253

Security

Securing cloud-based systems can be quite a challenge. The
methods that cyber-criminals and other people or systems that
attack systems with malicious intent deploy are very dynamic.
A system that is very secure today can be exposed tomorrow
as new and more complex threats are launched. To combat
the dynamic nature of security threats, a system should
proactively monitor all components for suspicious patterns.
There are many good books that go into great detail about
securing systems, and I’ll spare you the gory details. The
point to get across in this book is that building security into a
system is only part of the job. In Chapter 9, we discussed the
PDP method, which stands for protection, detection, and
prevention. Monitoring is one area where detection and
protection take place. Monitoring security is a proactive
approach that focuses on mining log files and discovering
abnormal patterns that have the potential of being an
unsuccessful or successful attempt at attacking the system.

As with the other metrics discussed in this chapter, security
should be monitored at every layer of the cloud stack and at
every component within each layer. Every component of a
system typically requires some level of authentication in order
for a user or a system to access it. Security monitoring should
look at all failed authentication attempts for every component
and detect if there is a certain user, system, or IP address that
is constantly trying and failing to authenticate. Most attacks
are attempted by unattended scripts, usually referred to as
bots. These bots work their way into the system through some
unsecure component and then run a series of other scripts that
try to access any application or server that it can.

254

Once detected, administrators can blacklist the IP address to
prevent it from doing any damage. The next step is
prevention. How did the intruder gain access in the first
place? Without detection, the only way to know that an
outside threat has penetrated the system is when the threat
accomplishes its objectives, which could be catastrophic, such
as stealing sensitive data, destroying or corrupting files and
systems, installing viruses and worms, consuming compute
resources that impact the system performance, and many
other horrible scenarios. For systems that are required to pass
security audits, it is mandatory to implement a PDP security
strategy.

Compliance

Systems that fall under various regulatory constraints should
implement a monitoring strategy for compliance. The goal of
this strategy is to raise alerts when parts of the system are
falling out of compliance. Compliance requires policies and
procedures to be followed both within a system and within the
business. Examples of policies that the business must follow
are policies pertaining to running background checks on
employees and restricting access to buildings. Policies
pertaining to the system, such as restricting production access
on a need-to-know basis, can be monitored within the system.
Once again, a team can mine log files to track enforcement of
policies. There are also many new SaaS and open source tools
that have recently entered the marketplace that allow policies
to be set up in the tools, and then the tools monitor the
enforcement of these policies. These tools raise alerts and
offer canned and ad hoc reporting for monitoring policy
enforcement.

255

Monitoring is not a silver bullet. But without information and
tools, systems are ticking time bombs waiting to go off at any
minute. Monitoring allows people to learn about their
systems. The best and most reliable systems are ones that are
always changing and adapting to the environment around
them. Whether it is tweaks to the code, the infrastructure, the
product, or the customer experience, it takes insights provided
by information to make the right changes in order to create
the desired result. Without monitoring, a system is like a fish
out of water.

Monitoring by Cloud Service
Level
Now that we know what to monitor, let’s see how monitoring
is accomplished within each cloud service model. As with
everything else in the cloud, the further down the cloud stack
you go, the more responsibility you take on. Starting with
SaaS, there is very little, if anything, that the end user needs
to do. The SaaS service is either up or down. If it is down or
appears to be down, most SaaS solutions have a web page that
shows the latest status, and they have a customer support web
page and phone number to call. If the SaaS system is critical
to the business, then the end user may want some kind of alert
to be triggered when the service is down. Some SaaS vendors
have a feature that allows end users to get alerts. If the SaaS
tool does not have this feature, the end user can use a tool like
Pingdom that pings the URL and alerts the appropriate people
that the service is unavailable. Even with this alerting

256

capability, with SaaS there is nothing the end user can do but
wait until the vendor restores the service.

In Chapter 13, “Disaster Recovery Planning,” we will discuss
the idea of having a secondary SaaS solution in place in case
the primary service goes down. For example, if an
e-commerce site leverages a SaaS solution for processing
online payments or for fulfillment and the service goes down,
the e-commerce site could detect the failure and configure
itself to switch over to its secondary provider until the service
is recovered. The trigger for this event could be an alert
message from the URL monitoring software.

Public and private Platform as a Service (PaaS) solutions
handle monitoring differently. With public PaaS, the vendor
manages both the infrastructure layer and the application
stack layer. The PaaS vendor supplies APIs to various
monitoring and logging solutions that they integrate with. The
application code that the consumer builds on top of the PaaS
should leverage these APIs so that all logs go to the
PaaS-provided central logging system (if that is desirable).
The consumer can use its own monitoring tools or it can
leverage the APIs of the monitoring tools that are integrated
with the PaaS. Not all PaaS solutions have intrusion detection
tools that are exposed to the end user. The thought process
here is that the vendor owns that responsibility and the
consumer should focus on its applications.

Private PaaS is more like IaaS. For both, the consumer must
monitor the system down to the application stack layer. Like
public PaaS, many private PaaS solutions have plug-ins for
modern logging and monitoring solutions. For IaaS solutions,
the logging and monitoring solutions must be installed and

257

managed by the consumer. For companies building their own
private clouds, they must also monitor the physical
infrastructure and data center.

AEA Case Study: Monitoring Considerations
The Acme eAuctions (AEA) auction platform is made up of
many components that support many actors. There are many
points of failure that need to be monitored. Uptime,
performance, reliability, security, and scalability are all
important to the success of the platform. AEA will want to
proactively monitor the platform to minimize any service
interruptions, performance degradation, or security breaches.
In order to protect the platform from the misuse of resources
(intentional or unintentional) by the external partners, the
partners’ resources will be throttled at predefined maximum
levels. Here is a short list of items that AEA determined that
it must monitor:

• Infrastructure—memory, disk, CPU utilization,
bandwidth, and so on

• Database—query performance, memory, caching,
throughput, swap space, and the like

• Application—transactions per second, page-load
times, API response time, availability, and so forth

• Access—external partner resource consumption
• Security—repeated failed login attempts,

unauthorized access
• KPIs—financial metrics, transaction metrics,

performance metrics
• Costs—cloud cost optimization

AEA will need to use a variety of monitoring tools to satisfy
these requirements. Some of these tools will mine the
centralized log files to raise alerts, such as detecting repeated

258

login failures from a single intrusion detection. There are both
open source and commercial tools for monitoring
infrastructure and databases. There are some great SaaS
solutions, like New Relic, that can be configured to set
performance, availability, and service level thresholds and
alert the appropriate people when those metrics fall out of
range. Another important tool is the cloud cost monitoring
solution. It is easy to quickly provision cloud resources. The
downside is that it is easy to run up the monthly infrastructure
bill just as fast if a close eye is not kept on the costs.

Understanding your monitoring requirements up front allows
you to find monitoring solutions that can meet many of your
overall needs. Companies that don’t take an enterprise
approach to evaluating their monitoring needs often wind up
with too many different tools, which makes it hard to piece
together data from various unrelated systems. By looking
across the enterprise, monitoring requirements can be
satisfied by fewer tools and hopefully by tools that can be
integrated with each other.

Summary
Monitoring is a critical component of any cloud-based
system. A monitoring strategy should be put in place early on
and continuously improved over time. There is no one
monitoring tool that will meet all the needs of a cloud
solution. Expect to leverage a combination of SaaS and open
source solutions and possibly even some homegrown
solutions to meet the entire needs of the platform. Managing a
cloud solution without a monitoring strategy is like driving

259

down the highway at night with the lights off. You might
make it home safe, but you might not!

Reference

Henderson, C. (2006). Building Scalable Websites.
Cambridge, MA. O’Reilly.

260

Chapter 13

Disaster Recovery Planning
Every big computing disaster has come from taking too many
ideas and putting them in one place.

—Gordon Bell

When it comes to technology, everything can and will fail. In
distributed environments, like many cloud-based solutions,
there are many moving parts and any part of the system can
fail at any time. The secret to surviving failures is to expect
everything to fail and design for those failures. Failures come
in many forms. The damage caused by a web server crashing
is easily mitigated by having multiple web servers behind a
load balancer. A database server crashing is a more severe
failure that requires more systems thinking to properly
recover from. A data center going down is an even more
severe failure and can ruin a business if a well-designed
disaster recovery solution is not in place.

Each cloud service model has a different set of challenges
when it comes to disasters. In the following paragraphs we
will discuss some best practices for each cloud service model
when dealing with disaster situations in the cloud.

261

What Is the Cost of
Downtime?
Cloud computing allows us to build systems faster and
cheaper than ever before. There are countless stories of how
companies rapidly built and deployed solutions that would
have taken many months or years to deploy in precloud days.
But getting a solution to the marketplace is only half of the
story. The other half of the story is deploying a solution that
can recover from disasters, big or small. When it comes to
disaster recovery, it still comes down to good old architecture
and planning.

The strategies for disaster recovery for cloud solutions are
fundamentally the same as the strategies we have had in place
for our data centers for years and years. The implementation
may be different but the way we go about system design is the
same. The first step in the process is to understand three
important variables from a business perspective. The first
variable is the recovery time objective (RTO) or the time
within which the business requires that the service is back up
and running. For example, a company running a high-traffic
e-commerce site might lose thousands of dollars per minute
when customers cannot order goods. The RTO for the
e-commerce site might be five minutes or less. That same
company might have a reporting system that could tolerate
being down for a longer period of time because the reports do
not have as much impact on revenue or customer satisfaction.
The RTO for the reports might be several days or even up to a
week if a disaster were to occur.

262

The second variable is the recovery point objective (RPO) or
the amount of time in which data loss can be tolerated. Using
the e-commerce example, the parts of the system that handle
financial transactions most likely have zero or near-zero
tolerance for losing any data. If the e-commerce application
has a social feature where buyers can share thoughts about the
products across their social networks, the company can
tolerate a longer period of time where data may be lost.

The third variable is value, which is a measurement of how
much it is worth to the company to mitigate disaster
situations. There are many factors that may influence the
value that a company puts on recovery. Here are a few
examples.

The customers of a cloud service can greatly influence the
value of recovery. For example, when our digital incentive
platform first launched, our first customer was a small
family-owned grocery chain. At that point in time we had
what we called “good enough” recovery whereby, if a disaster
occurred, we could be running in another availability zone in
an hour or two. The process to recover was not automated at
that time. Once we started engaging with the top retailers, it
was apparent that we needed real-time recovery from any
disaster that drove our investments to build fully redundant
virtual data centers across multiple availability zones. Our
customers drove up the value of recovery because of the
potential for revenue and market share that would result in
successfully serving the biggest retailers.

Another example is the criticality of the service. There are a
number of factors that make a service critical. If the service is
critical to the lives of patients or the safety of citizens, then

263

the value of recovery is likely very high. Public perception is
another factor that can drive the criticality. For example, there
are a number of companies competing for market share in the
Internet music space. Pandora, Last.fm, and Spotify are just a
few of them. If one of them were perceived as being more
unreliable than the others because of its inability to quickly
recover from outages, it would be extremely challenging to
compete.

The business should determine the RTO, RPO, and the value
of recovery for each functional area of the architecture. These
values should drive the investments that IT makes in order to
provide the right level of recovery for each functional area.
The next section will discuss disaster recovery strategies for
each cloud service model.

Disaster Recovery Strategies
for IaaS
Infrastructure as a Service (IaaS) disaster recovery strategies
are much more involved than Platform as a Service (PaaS)
and Software as a Service (SaaS), because the cloud service
consumer (CSC) is responsible for the application stack. With
public IaaS solutions the CSC is dependent on the cloud
service provider (CSP) for managing the physical data center.
This chapter will focus on how to recover if any layer within
the cloud stack is in a disaster situation but will not discuss
strategies for operating physical data centers.

264

Public IaaS cloud providers like Amazon and Rackspace have
had their share of outages over the years. It would be foolish
to expect otherwise. There are many ways to design in
anticipation of these failures. Let’s start with some examples
of preventing disasters when Amazon has outages.

Amazon has regions and availability zones. The regions are
located across the globe while the zones are independent
virtual data centers within a region. For example, the
U.S.-East region located in the Virginia data center has four
zones (a, b, c, and d). Historically, Amazon Web Services
(AWS) outages have occurred in a single availability zone.
Smart companies that have built redundancy across multiple
zones have been able to maintain uptime even when AWS has
outages (we will discuss how to build redundancy later in the
chapter). However, sometimes an applications programming
interface (API) has an outage that can impact multiple zones.
For example, Amazon Elastic Block Store (EBS) is a service
that provides network-attached disks, which is usually where
the database is installed. If the EBS has issues across zones,
cross-zone redundancy would not prevent the system from
failing.

One method to combat this issue on AWS is build redundancy
across regions. Cross-region redundancy is more complex and
expensive than cross-zone redundancy. Moving data across
zones incurs charges for the data transfer and introduces
latency that does not exist between availability zones within a
region. The cost and complexity of cross-region redundancy
needs to be balanced with the value of recovery, RTO, and
RPO established by the business.

265

Another method is to implement a hybrid cloud solution.
With Amazon, this can be accomplished by leveraging a
private cloud vendor that supports Amazon’s APIs.
Eucalyptus is a company that provides AWS-compatible
APIs, but it is important to note that they only support a
subset of the APIs that AWS offers to its customers. For an
AWS-Eucalyptus hybrid approach, architects would be wise
to restrict their AWS API usage to just those APIs that are
supported on the Eucalyptus platform if they want all parts of
the system to be recoverable. Using Eucalyptus in a hybrid
cloud approach is essentially creating another availability
zone, except that the APIs in this private zone are isolated
from any issues that may occur on AWS.

Rackspace provides both public and private IaaS
functionality. It is possible to create a hybrid cloud solution
leveraging open source cloud software like Open Stack and
running the exact same cloud software on both the public and
private cloud. In fact, the private cloud could be located in
any data center, whether it is at Rackspace, the company’s
own data center, or some other hosted facility.

Another approach is to leverage multiple public cloud
vendors. To do this effectively, the systems must be built in a
way that does not lock you into the IaaS vendor. This is easier
said than done. For example, one of the huge benefits of
AWS and other IaaS providers is the large selection of APIs
that can be leveraged to quickly build applications and focus
more on solving business problems. To be cloud agnostic, one
must refrain from using these proprietary APIs, thus
devaluing the vendor offering. Another approach is to isolate
the areas in the code that call the IaaS APIs and have logic
that detects which IaaS vendor to leverage and then execute

266

the appropriate API. The best way to accomplish the goal of
leveraging multiple public cloud vendors is to leverage an
open source cloud solution like Open Stack across both public
IaaS providers.

Many companies feel that building redundancy across AWS
availability zones is a sufficient disaster recovery strategy.
Unless the value of recovery is extremely high, I would agree,
given that historically, AWS outages have been isolated to
single zones. However, it is important to know that even
though an AWS region has multiple zones, all zones are still
in the same general location. For example, all U.S.-East zones
are in Virginia. If there were a major catastrophic event in
Virginia, there is the potential that all U.S.-East zones could
go down. The next section describes four different approaches
for dealing with disasters where either the database is
unavailable or the entire data center is unavailable. These
approaches can be applied to public, private, or hybrid cloud
solutions and also to AWS regions or zones.

Recovering from a Disaster
in the Primary Data Center
Whether you are using public, private, or hybrid IaaS
solutions, there is a standard set of best practices for
recovering the database in the unfortunate event that the
database or the data center is in a disaster state. Following are
four common methods of recovery for leveraging a secondary
data center (physical or virtual) to protect against disasters
within the primary data center:

267

1. Classic backup and restore method
2. Redundant data centers—Active-Passive Cold
3. Redundant data centers—Active-Passive Warm
4. Redundant data centers—Active-Active Hot

Classic Backup and Restore Method

In this method (see Figure 13.1), daily full backups and
incremental backups are created during the day and stored to
a disk service provided by the cloud vendor. The backups are
also copied to the secondary data center and possibly to some
other third-party vendor just to be extra safe.

Figure 13.1 Classic Backup and Recovery Method

If the database goes off-line, gets corrupted, or encounters
some other issue, we can restore the last good backup and
apply the latest incremental backups on top of that. If those
are unavailable, we can go to the secondary site and pull the
last good full backup and the incremental backups dated after
the full backup.

268

This method is the cheapest solution because there are no
redundant servers running. The downside of this approach is
that the RTO is very long because the database cannot be
brought back online until all of the relevant backups have
been restored and the data quality has been verified. This
method has been used for years in our brick-and-mortar data
centers.

Active-Passive Cold

In this model (see Figure 13.2), the secondary data center is
prepared to take over the duties from the primary data center
if the primary is in a disaster state. The term cold means that
the redundant servers are not on and running. Instead, a set of
scripts is ready to be executed in case of an emergency, which
will provision a set of servers that is configured exactly the
same as the resources that run at the primary data center.
When a disaster has been declared, the team runs these
automated scripts that create database servers and restore the
latest backups. It also provisions all of the other servers (web
servers, application servers, etc.) and essentially establishes a
duplicated environment in a secondary data center, hence the
term cold. This method is a cost-effective way to deal with
outages because the cold servers do not cost anything until
they are provisioned; however, if the RTO for an outage is
less than a few minutes, it will not be an acceptable plan.
Restoring databases from tape or disk is a time-consuming
task that could take several minutes to several hours,
depending on the size of the database. The Active-Passive
Cold approach is for high-RTO recoveries.

Figure 13.2 Redundant Data Centers—Active-Passive Cold

269

Active-Passive Warm

The warm method (see Figure 13.3) runs the database server
hot, meaning that it is always on and always in sync with the
master data center. The other servers are cold or off and are

270

only provisioned when the disaster recovery plan is executed.
This method costs more than the Active-Passive Cold
method, because the hot database servers are always on and
running, but greatly reduces the amount of downtime if an
outage occurred because no database restore would be
required. The recovery time would be the time it takes to
provision all of the nondatabase servers, which can usually be
accomplished in a few minutes if the process is scripted.
Another advantage of this approach is that the hot database at
the secondary data center can be allocated for use as opposed
to sitting idle, waiting for a disaster to be declared. For
example, ad hoc and business intelligence workloads could be
pointed to this secondary data center’s database instances
segregating reporting workloads from online transaction
processing workloads, thus improving the overall efficiency
of the master database.

Figure 13.3 Redundant Data Centers—Active-Passive Warm

271

For systems with a low RPO, running a live and in-sync
database at a secondary data center is a great way to reduce
the loss of data while speeding up the time to recovery.

272

Active-Active Hot

The most expensive but most resilient method is to run fully
redundant data centers at all times (see Figure 13.4). The
beauty of this model is that all of the compute resources are
being used at all times and in many cases a complete failure
of one data center may not cause any downtime at all. This is
the model that we used for the digital incentives platform.
That platform has survived every AWS outage without ever
missing a transaction, while many major websites were down.
We had a low tolerance for lost data and downtime, and the
value of recovery to the business was extremely high because
of the risk of impacting our customers’ point-of-sale systems.

Figure 13.4 Redundant Data Centers—Active-Active Hot

273

In this model, the database uses master–slave replication
across data centers. When the primary data center fails, the
database at the secondary data center becomes the new
master. When the failed data center recovers, the databases
that were down start to sync up. Once all data in all data
centers is back in sync, control can be given back to the

274

primary data center to become the master again.
Active-Active Hot is the way to go when the value of
recovery is extremely high and failure is not an option.

Disaster Recovery Strategies
for PaaS
With public PaaS, the entire platform, which includes the
application stack and the infrastructure, is the responsibility
of the vendor and the consumer is responsible for the
applications built on top of the platform. The promise of
public PaaS is to abstract away all of the work required to
handle the underlying infrastructure and application stack,
including scaling databases, designing for fail over, patching
servers, and much more, so developers can focus on business
requirements. That downside of public PaaS is that when a
disaster occurs, the consumer is at the mercy of the PaaS
provider’s disaster recovery plan. For mission-critical
applications, it is a tough pill to swallow to have no control
over when the applications will be back up again. There have
been occasions where AWS has had issues in an availability
zone that have caused outages in public PaaS providers like
Heroku. When this happened many developers flocked to
forums and blogs to voice their frustration as their
applications remained down and they could do nothing about
it.

If reliance on a public PaaS for disaster recovery is too risky
for a company, private PaaS providers are a great alternative.
With private PaaS, the vendor abstracts the development

275

platform so installing and managing the application stack
becomes simple and automated, but the consumer now has to
manage the infrastructure. That may sound unfortunate, but
when a disaster occurs, the consumer is back in control of the
situation since it manages the physical or virtual
infrastructure.

In fact, the best disaster recovery strategy for a public PaaS is
to leverage a PaaS provider that allows the PaaS platform to
be run in any data center whether it is on-premises or in the
public cloud. Open source solutions like Red Hat’s OpenShift
and Cloud Foundry offer hybrid cloud solutions. Consumers
can install these PaaS solutions on a public IaaS like AWS or
Rackspace and locally in their own data center. Both the
public IaaS data center and the private IaaS data center can
run various workloads and act as secondary data centers if the
primary fails. These four methods of recovery can be applied
in a private or hybrid PaaS scenario.

Disaster Recovery Strategies
for SaaS
We have discussed strategies for escaping outages in the
cloud for PaaS and IaaS. Sometimes these outages are caused
by the cloud service providers themselves, and sometimes
there are true disasters related to weather, terrorism, or other
catastrophic events. But what about SaaS? Many consumers
don’t consider any strategies for SaaS solutions, which could
lead to serious business impacts if a disaster were to occur.
How many companies actually have a disaster recovery plan

276

for the use case where Salesforce.com is unavailable for an
extended period of time? What would a company do if its
SaaS-based financial system went off-line for a week? It
would not be pretty. For SaaS solutions, if the data or
business processes are mission critical, there had better be a
plan for operating if the service is not available. Minimally,
the SaaS contract from the vendor should have a software
escrow. A SaaS software escrow protects the buyer if the
SaaS vendor goes out of business or is purchased by another
company and severs the existing contract. The escrow holds
the vendor’s IP in an independent third party’s holding area
where it may be released to the buyer if the vendor goes out
of business or kills the product. This essentially gives the
buyer the ownership of the data.

Escrows are great for protecting your rights and ownership,
but they don’t do much for getting your business back up and
running. Businesses should document and practice manual
processes as a plan to combat a major outage for any
mission-critical SaaS functionality. In some cases, it may
even be feasible to use two different SaaS vendors to protect
against outages. For example, let’s say that a business is
running an e-commerce site that generates $1 million a day in
online sales. Instead of reinventing the wheel it decides to
leverage a best-in-breed shopping cart and credit card
processing SaaS solution. If this SaaS solution fails, the
company risks losing $700 a minute. It would be wise for the
company to use a second SaaS solution, either in a
round-robin fashion or as a hot backup. Most of these
solutions charge by transaction, so a hot backup method
would not be an expensive undertaking.

277

Another disastrous situation is the use case where a cloud
vendor goes out of business or is bought by another company
and shut down. SaaS consumers should think about
requesting data extracts for any SaaS application that is
storing critical data. Having the data may not enable the
consumer to get a system up and running quickly, but it does
prevent data loss and does allow for data to be loaded into a
database for querying. Without the data, if the SaaS vendor
shuts down, the consumer does not have the ability to do
anything other than take a legal action to try to get access to
its data or hope that the vendor has enough resources left to
provide it with its data. From a risk-mitigation standpoint, it is
much safer to get a regularly scheduled extract even if
nothing is done with it other than to archive it.

Disaster Recovery Hybrid
Clouds
Hybrid clouds offer a unique way to deal with disaster
recovery. In a hybrid cloud environment, an enterprise can
split workloads between the public and private cloud. For the
workloads run in the public cloud, the private cloud could be
set up to be the fail-over data center. For the workloads that
run in the private cloud, the public cloud could be used as the
fail-over data center. To accomplish this, it is important that
the public and private cloud leverage the same cloud services
as much as possible. Here are a few examples.

278

Hybrid IaaS Proprietary

Let’s assume the proprietary public cloud provider is AWS.
In order to keep the systems consistent between the public
and private clouds, a private cloud solution that supports
AWS APIs must be used. Eucalyptus is one company that
supports AWS APIs. It is important to note that Eucalyptus
does not support all AWS APIs. Because of this, it makes
sense to limit the AWS APIs for the components of the
architecture that need to fail over only to those APIs
supported by Eucalyptus.

Hybrid IaaS Open

Another option is to leverage an open source IaaS solution
like OpenStack and run the software both on the public cloud
and the private cloud. In this example, the exact same code
can be run on both clouds, and there is no need to limit the
use of APIs like there is in the previous Eucalyptus example.

Hybrid PaaS

In order to accomplish fail over between public and private
clouds with PaaS, one must first choose a private PaaS. There
are several open source and commercial private PaaS players.
Many of them are integrated or are in the process of
integrating with OpenStack and are capable of running on
AWS (or any infrastructure). As mentioned earlier in the
book, the downside of private PaaS is that the cloud service
consumer still has to manage the infrastructure layer, the
application stack, and the PaaS software. But, if fail over is

279

required between public and private clouds, private PaaS is
the only solution because public PaaS cannot run on private
infrastructure.

AEA Case Study: Disaster Recovery Planning
To properly design for disaster recovery, Acme eAuctions
(AEA) refers back to its business architecture diagram and
assigns a value for the RTO, RPO, and each component of the
architecture. The most critical part of the architecture is the
buyer services. Every second that buyers can’t buy products,
AEA is losing revenue. The next most critical component is
the API layer. When the API layer is down, external partners
cannot access the system. Seller services are the next most
critical component. When the seller services are down, new
auctions can’t be launched and existing auctions can’t be
changed, but buyers can still bid on active auctions. Of the
business processes, the pay seller process can probably be
down longer than the other services, but that service is
handled by a third-party solution so that AEA does not have
to handle credit cards and payments in the cloud. The
back-end systems can be down the longest.
The most critical components (buyer services, APIs, seller
services) will be architected to run in multiple active-active
clouds. AEA has chosen to run in the public cloud. These
critical components will be required to run in multiple data
centers provided by the cloud service provider. Each data
center will run the services as active, and traffic will be routed
to the data center closest to the requestor. If that data center is
unavailable, the traffic will route to the next available data
center. AEA feels that an active-active hot architecture
provides it with high availability and fast recovery time. It has
also noted plans to leverage its existing data center as another

280

data center to fail over to, but the work required to
accomplish that goal is much larger than the time frame AEA
currently has to deliver. Instead, the company logs that task in
the backlog and ranks it as low for now. If the active-active
hot solution in the public cloud does not meet AEA’s needs in
the future, it can move toward building a hybrid solution so
that its data center can also serve as a backup.
The back-end systems follow a more traditional model of
backing up data and sending it off-site. A secondary cold site
is available to restore services for these components in the
event of a disaster.

Summary
Cloud computing is still relatively new and immature. We
should expect to see occasional outages, vendors closing their
doors, and natural disasters like hurricanes, earthquakes, and
floods impacting our ability to keep our systems up all of the
time. Planning for disasters is a critical function regardless of
the cloud service model. Companies must determine the RTO,
RPO, and value of recovery so that the appropriate
investments and recovery designs can be implemented. It is
critical to understand how to recover from disasters for each
cloud service model and each deployment model. The greater
the risk of the consequences of a disaster to a company, the
more likely the company is going to want more control to
mitigate those risks. The risk tolerance can drive the cloud
service and deployment model decisions. It is important that
disaster recovery is part of the decision-making process when
companies choose cloud service and deployment models.

281

Chapter 14

Leveraging a DevOps
Culture to Deliver Software
Faster and More Reliably
I’ve hugged a lot of servers in my life. They don’t hug you
back.

—Werner Vogel, CTO of Amazon Web Services

The term DevOps is relatively new and broadly
misunderstood. Many people think of DevOps as an IT role,
more specifically as a hybrid between a developer and a
systems administrator. The problem with this thinking is that
companies tend to create a new silo called DevOps and try to
fill this silo with super-administrators who are magically
awesome at both development and operations. Sometimes it is
easier to find a unicorn.

DevOps is not a group and it is not a role. DevOps is a culture
shift or a new way of thinking about how we develop and
release software. The DevOps movement is about tearing
down silos and fostering communication and collaboration
between development, operations, quality assurance, product,
and management.

282

Developing the DevOps
Mind-Set
In 2009, the first DevOps Days conference was held in
Belgium where several practitioners, inspired by a
presentation by John Allspaw and Paul Hammond titled “10
Deploys per Day: Dev and Ops Cooperation at Flickr,” got
together to discuss how to create a more collaborative culture
among developers and operations. On Twitter, attendees of
the conference used the hashtag DevOps to discuss the
conference. The topic gained more and more support as more
DevOps Days sprung up across the globe. Eventually, the
hashtag became the name of this new movement.

The DevOps movement was born out of frustration of many
practitioners’ experiences dealing with fragile systems.
Systems become fragile due to software being built in silos
where the different teams are not communicating effectively
with each other. Because of this lack of communication,
developers often do not have the environments and tools that
they need to be productive, and the operations team often gets
software thrown over the wall to them to support.
Deployments are complex and error prone, causing release
cycles to be longer, thus creating even more risk. These
fragile systems are loaded with technical debt, which makes
the system harder to maintain with each release.

Fragile systems loaded with technical debt create unplanned
work. When resources get pulled off of planned work to jump
on unplanned work, project schedules are impacted and due
dates slip. In order to mitigate the risks of date slippage,

283

developers are forced to take shortcuts. Shortcuts usually
result in a lack of sound architecture, delaying nonfunctional
requirements such as security and supportability, and other
critical stability features, which leads to even more technical
debt. This cycle continues endlessly creating a hopeless death
spiral where quality, reliability, morale, and customer
satisfaction all degrade over time.

In an effort to stop this madness, the DevOps movement
focuses on a systems thinking approach. Early innovators in
this space coined the term CAMS, which stands for culture,
automation, measurement, and sharing. The goal of DevOps
is not to hire superhuman people who are experts at
development and operations; instead, the goal is to build
systems with a mind-set that the needs of development,
operations, and quality assurance are all interrelated and need
to be part of a collaborative process. No longer will
developers only be responsible for code, testers only be
responsible for testing, and operations only be responsible for
operating the system. In a DevOps culture, everyone is
responsible and accountable for the entire system. Everyone
is on a shared mission with shared incentives. Everyone is
responsible for delivery and quality.

DevOps thinking as described by Gene Kim, a notable author
and practitioner of DevOps, can be boiled down to these four
principles:

1. Understand the flow of work.
2. Always seek to increase flow.
3. Don’t pass defects downstream.
4. Achieve a profound understanding of the system.

284

These principles apply to the entire team. Whether a person is
in development, operations, or product, each member of the
team should fully understand how the system flows,
proactively find ways to improve that flow and eliminate
waste, and understand the entire system top to bottom. In
addition, the team must insist that defects are not allowed to
live on forever because the longer they stick around, the more
expensive and complex they are to fix, resulting in unplanned
work in the future.

Building and releasing software is a similar process to
manufacturing and shipping products. In fact, the DevOps
movement is greatly influenced by lean manufacturing
principles. One of the main focuses in the DevOps movement
is to maximize the flow of software creation from concept to
development to release. To accomplish this goal, teams
should focus on the following six practices:

1. Automate infrastructure
2. Automate deployments
3. Design for feature flags
4. Measure
5. Monitor
6. Experiment and fail fast

Automate Infrastructure
One of the great advantages of cloud computing is that
infrastructure can be abstracted via APIs, thus empowering us
with the ability to treat infrastructure as code. Since
provisioning and deprovisioning infrastructure can be

285

scripted, there is no excuse not to automate the creation of
environments. In fact, we can build code and environments at
the same time. A best practice is to enforce the policy that
every sprint that ends with a complete set of code should also
include the corresponding environment, as well. By enforcing
this policy, the user stories in the sprint should include the
necessary development, operations, and quality assurance
requirements. By delivering the code and its test harnesses
with the environment we greatly increase the flow of our
work.

In the old days, we would deliver the code, and throw it over
the wall to quality assurance, which then threw it over the
wall to the operations team that would have to stand up the
appropriate environment. Due to a lack of collaboration and
communication between these silos, a lot of back-and-forth
meetings, phone calls, and e-mails were required in order for
operations to attempt to manually create the correct
environment. This often led to bottlenecks and environmental
issues, since the operations team was not involved in the early
discussions. To make matters worse, once the environment
was finally completed, the code that was deployed to it was
running in this environment for the first time, which usually
introduced new bugs late in the project life cycle. Finding
bugs late in the life cycle caused teams to prioritize these
bugs, only fix the critical ones, and shove the rest into the
backlog with tons of other bugs from previous releases that
may never make it to the front of the priority list. This is
obviously not the way to create quality and speed-to-market.

Operations should empower development to create their own
environments, but in a controlled fashion. Providing
self-service infrastructure is another great way to increase the

286

flow of development; however, without the right level of
governance, self-service can lead to chaos, inconsistent
environments, nonoptimized costs, and other bad side-effects.
The way to properly allow for self-service provisioning is to
create a standard set of machine images that people with the
proper access can request on demand. These machine images
represent standard machines with all of the proper security
controls, policies, and standard software packages installed.
For example, a developer may be able to select from a
standard set of machine images in a development or quality
assurance environment for a web server running Ruby, an
application server running NGINX, a database server running
MySQL, and so on. The developer does not have to configure
any of these environments. Instead he just requests an image
and a corresponding target environment. The environment
gets automatically provisioned in a few minutes and the
developer is off and running. What I just described is how
self-service provisioning can work in an Infrastructure as a
Service (IaaS) model. In a Platform as a Service (PaaS)
model, developers with the appropriate access to
nonproduction environments can perform the same
self-service functionality using the PaaS user interface.

Automate Deployments
Automating deployments is another critical task for
increasing the flow of software development. Many
companies have perfected automation deployments to the
point where they deploy multiple times a day. To automate
deployments, the code, configuration files, and environment
scripts should share a single repository. This allows the team

287

to script the deployment process to perform both the build and
the corresponding environment at the same time. Automating
deployments decreases cycle times because it removes the
element of human error from deployments. Faster and
better-quality deployments allow teams to deploy more
frequently and with confidence. Deploying more frequently
leads to smaller change sets, which reduces the risk of failure.

In the old days, deployments were cumbersome manual
processes that usually had a dependency on specific people
who were knowledgeable about the steps involved to deploy a
build. The process was not repeatable because of the manual
intervention required and deployments were often dreaded
exercises that occurred late at night or early in the morning
and involved urgent bug fixing after experiencing issues with
the deployment. Since the deployments were challenging and
buggy, teams often chose to deploy less frequently due to the
fear of breaking the production system.

Automated deployments aim to resolve all of these issues.
Automation takes the art out of deployments and makes it
easy enough that anyone with the right permissions can
deploy software by simply picking a version and an
environment and clicking a button. In fact, some companies
that have mastered automation require new hires to perform a
deployment in a nonproduction environment as part of their
training on their first day of work.

288

Design Feature Flags
Another new trend for modern-day deployment
methodologies is the use of feature flags. Feature flags allow
features to be configured to be turned on or off or to only be
available to a certain group of users. This is useful for a
couple of reasons. First, if a feature has issues, once it is
deployed it can be quickly configured to be turned off. This
allows the rest of the deployed features to remain running in
production and gives the team time to fix the issue and
redeploy the feature when it is convenient. This approach is
much safer than having a team scramble to quickly fix a
production issue or cause the entire release to be backed out.

Another use of feature flags is to allow a feature to be tested
in production by a select group of users. For example,
imagine our fictitious auction company, Acme eAuctions, is
launching a new auction feature that allows the person
leading a live auction to activate a webcam so the bidding
customers can see her. With the feature flag and a
corresponding user group setting, this functionality can be
turned on for just employees so they can run a mock auction
in production and test out the performance and user
experience. If the test is acceptable, they may choose to allow
the feature to run in a select geography as a beta test to get
feedback from customers before rolling it out to all users.

289

Measure, Monitor, and
Experiment
We discussed at length measuring and monitoring in Chapter
12. The point to add here is that by leveraging feature flags,
we can run experiments like A/B testing to gather information
and learn about the system and its users. For example, let’s
say that a product manager has a theory that the registration
process is too complex for some users and she wants to test a
new, simpler registration form. By leveraging feature flags
and configurations, the new registration page can be
configured to display every other time a registration page is
requested so that the team can compare the user metrics of the
new registration page against the user metrics of the existing
registration page. Another option would be to test the feature
in specific geographies, within specific time frames, or for
specific browsers or devices.

Feature flags can also be used to test features in production
against real production loads. The feature can be enabled for a
test group or as a beta launch to a select location. Once
enabled, the feature can be closely monitored and turned off
once enough data is collected or if any issues are detected.
DevOps cultures encourage this type of experimentation. Fail
fast is a common phrase used in DevOps. With one-click
automation of infrastructure and deployments along with the
configurability of feature flags, teams can quickly
experiment, learn, and adjust, which leads to a better product
and happier customers.

290

Continuous Integration and
Continuous Delivery
In our discussion on automation we touched on the
automation of environments and builds. Let’s dig deeper into
this topic. Continuous integration (CI) is the practice of
building and testing applications on every check-in. No
matter how big or small the change is, the developers need to
be conditioned to always check in their work.

Continuous delivery (CD) takes this concept one step further
and adds automated testing and automated deployment to the
process in addition to CI. CD improves the quality of
software by ensuring testing is performed throughout the life
cycle instead of toward the end. In addition, the build process
fails if any automated test fails during the build process. This
prevents defects from being introduced into the build, thus
improving the overall quality of the system. By leveraging
CD, we get software that is always working, and every
change that is successfully integrated into a build becomes
part of a release candidate.

In the old days, bug fixes that took only a few minutes often
had to wait for many other user stories to be completed so
they could be packaged up in a big release. In that model,
software was assumed to be incorrect until it was validated by
dedicated quality assurance professionals. Testing was a
phase that was performed after development and the
responsibility of quality fell in the hands of the quality
assurance team. Developers often threw poor-quality code
over the wall to quality assurance in order to meet the

291

development deadlines with little to no repercussions for the
quality of their work. Quality assurance often had to cut
corners to complete testing to get the code to operations in
time to release the software. This resulted in known bugs
being allowed to flow into the production system. These bugs
would go through a prioritization process where only the most
critical bugs would be addressed so that the project data
would not be missed or would not slip further.

With CD, software is assumed to be correct unless the
automation tells us otherwise. Quality is everyone’s
responsibility and testing is performed throughout the life
cycle. To successfully run projects using continuous delivery,
there must be a high level of communication and
collaboration along with a sense of trust and ownership
throughout the team. In essence, this is the type of culture that
the DevOps movement represents.

So, what does all of this stuff have to do with cloud
computing? A DevOps culture, continuous integration, and
continuous delivery are not mandatory for building software
in the cloud. In fact, to large, established companies with tons
of process and long delivery cycles this may all sound more
like a fantasy than reality. But all three of these buzzwords
evolved from innovative practitioners leveraging one of the
biggest advantages of cloud computing, infrastructure as
code, and putting it to use with some tried-and-tested best
practices from lean manufacturing.

One of the biggest promises of cloud computing is agility.
Each cloud service model provides us with an opportunity to
get to market faster than ever before. But it takes more than
the technology to realize that agility. As every enterprise

292

architect knows, it takes people, process, and technology. The
technology is here now. People like you are reading books
like this because you want to learn how to take advantage of
this amazing technology to achieve business goals. But
without good process, agility will be hard to come by. Here is
a real-life example.

A client of mine built an amazing cloud architecture that
changed the business landscape in its industry. This client
turned the business model upside down within its industry,
because all of its competitors had legacy systems in massive
data centers and large investments of infrastructure spread
throughout retail customer stores. This client built an entire
solution in a public cloud and required no infrastructure at the
retail stores, resulting in quicker implementations, drastically
lower costs, and more flexibility. Unfortunately, as my client
grew from a small start-up to a large company it did not
establish a mature set of processes for builds and
deployments. It created a silo of operations personnel, dubbed
“DevOps.” Developers threw code over the wall to quality
assurance, which threw it over the wall to DevOps. DevOps
became a huge bottleneck. The goal of this team was to
automate the builds and the deployments. The problem was
that it was not a shared responsibility. Everything fell into this
group’s lap and it could only chip away at the problem. The
end result was a lot of missed deadlines, poor success rates of
deployments, poor quality, angry customers, and low morale.
Even though the company’s technology was superior to the
competition, the bottlenecks within IT were so great that it
could not capitalize by quickly adding more features to
differentiate itself from the market even more.

293

The moral of the story is cloud technologies by themselves
are not enough. It takes great people, a special culture of
teamwork and ownership, and great processes, which should
include as much automation as possible in order to achieve
agility in the cloud.

Summary
DevOps is a grassroots cultural movement driven mostly by
operations practitioners, with the goal of increasing
collaboration and communication among team members to
release quality software quicker and more reliably. DevOps
should not be thought of as an IT role and should not be
another silo within IT. The DevOps mind-set is based on lean
manufacturing principles with the goals of increasing work
flow and eliminating waste while reducing defects.

Continuous integration is a common process used in DevOps
cultures, which practices building and testing the system with
every check-in. Continuous delivery strives to increase the
rate at which software can be deployed by enforcing
automated tests, builds, and deployments. Companies looking
to the cloud for agility must not forget that it takes the right
culture (people) and processes like CI and CD along with the
technology to accomplish the goal of delivering on agility.

References

Duvall, P., S. Matyas, and A. Glover (2007). Continuous
Integration: Improving Software Quality and Reducing Risk.
Upper Saddle River, NJ: Addison-Wesley.

294

Humble, J., and D. Farley (2010). Continuous Delivery:
Reliable Software Releases Through Build, Test, and
Deployment Automation. Upper Saddle River, NJ:
Addison-Wesley.

Kim, G. (2012, September 27). “Why We Need DevOps.”
Puppet Conference 2012. Keynote address. Mission Bay
Conference Center, San Francisco.

295

Chapter 15

Assessing the Organizational
Impact of the Cloud Model
People don’t hate change, they hate the way you’re trying to
change them.

—Michael T. Kanazawa, transformation change expert

If we look back at the evolution of technology from the
mainframe days, to the birth of the personal computer to the
Internet age, and now the cloud, the one thing that is constant
about these transitions is that they all bring a tremendous
amount of change. Along with the change in technology,
come changes in how businesses operate. Each transition
altered the operating model of businesses. In the mainframe
days, software was primarily used to support internal business
functions like payroll, accounting, manufacturing, and the
like. Consumers did not interface with systems, they
interfaced with people like bank tellers, cashiers, insurance
agents, pharmacists, travel agents, and so forth. Business and
IT alignment was much easier back then because IT’s sole
purpose was to build applications for the business.

The PC era created a new operating model where software
vendors would package and ship software to customers, who
would install and manage the software within their own

296

enterprises. This new operating model required organizational
changes in order for companies to support software that was
running at customer sites. New support organizations were
formed, new sales processes were created, and new software
requirements were prioritized to deal with software running at
client sites. Pricing models changed, incentives changed,
contracts and terms of services changed, and even the types of
customers changed. Business and IT alignment started to
fragment because now IT had many customers, internal and
external. In addition, IT now had to manage infrastructure and
software distributed within and outside the enterprise,
whereas in the past everything was centralized on the
mainframe.

The Internet era changed the operating model drastically
again by allowing businesses to sell goods and services
directly to customers 24 hours a day. Now businesses could
operate around the clock and outside of brick-and-mortar
buildings. As in the previous era, huge process and strategy
changes impacted sales, legal, development, support, and so
forth. IT now had not only to deal with internal and external
customers; consumers now were directly talking to systems.
On top of that, internal systems were now at risk of being
compromised by all kinds of external threats that could enter
via the Internet. This created a huge gap in IT and business
alignment because even more non-value-added work was
thrust upon IT departments.

Now the cloud is here and the pattern of change is repeating
itself once again. Cloud computing brings an enormous
amount of change to a businesses operating model. These
changes go way beyond the IT department and companies
need to be prepared to tackle them. Now IT is building

297

software that runs in the cloud and customers access it via the
Internet. The days of shipping software to a customer and
making a killing in professional services and annual
maintenance fees are over. Large licensing fees and large
capital expenditures coupled with long implementation
projects are a distant memory. The expectation now is that the
software is turned on, always works, gets updated regularly,
and we only pay for what we use. Talk about change! Let’s
take a closer look at how these changes impact organizations.

Enterprise Model vs. Elastic
Cloud Model
Prior to the rise in cloud computing, many companies
participated in what is called the on-premises software
delivery model, also known as the enterprise model. In this
model, companies built and managed their own data centers
and infrastructure and built software that was either shipped
to customers or downloaded by customers. In the software
delivery model, major releases of software were typically
delivered annually or semiannually with small patches during
the year to fix critical defects or release an important feature.

The software was built with the intention that the customer or
a professional services company would perform an install or
an upgrade of an existing install. Upgrades were disruptive to
the customers’ day-to-day business. Customers had plenty of
other priorities and did not want to be updating vendor
solutions too frequently. The customer also was responsible
for managing the physical infrastructure and the software,

298

which included capacity planning, backup/recovery, and
scaling. When systems were nearing capacity, the customer
was responsible for procuring more hardware and more
licenses. Purchasing this type of software required up-front
capital for hardware, software, and human resources needed
to implement the solutions. Many software products required
long, complex implementations that might take weeks or even
months. Other solutions required specialists to be brought in
at outrageous hourly rates to perform the install of these
proprietary solutions. Companies’ revenue models banked on
professional services and reoccurring annual maintenance
fees that averaged 20 percent of the initial cost. In this model,
changes to the software happened infrequently, because of the
complexity and the costs of performing upgrades.

Enter the cloud era and the new operating model, called the
elastic cloud model. Randy Bias, chief technology officer of
Cloudscaling, said it best in an interview that I did with him:
“There is a fundamental shift in software that ships versus
software that is hosted.” The shift caused by the elastic cloud
model is as disruptive to businesses as the impacts of the
Internet were back in the 1990s. In the enterprise model, once
the vendors created and shipped a release, the onus was on the
customer to manage the production environment. In the
elastic model, the cloud providers are delivering a service that
is always on, like a utility. Building cloud services raises the
level of quality, speed-to-market, and customer focus that an
organization must provide to stay competitive.

Here is an analogy that sums up the difference between the
enterprise model and the elastic model. The enterprise model
is like selling a generator to a customer and the elastic model
is the equivalent of providing the electricity to a customer 24

299

hours a day. Once you build and ship the generator you are
done with the customer interaction except for customer
support calls. When providing electricity, the job is never
done because the electricity must always work. If the
generator breaks, only one customer is unhappy. If the
electricity does not work, a lot of customers are unhappy.
Obviously, the company providing electricity requires a very
different organization than the company selling generators.

IT Impact
The following sections highlight the areas within IT that are
impacted when moving from an on-premises enterprise model
to an elastic cloud model.

• Deployments. Deployments in the cloud happen
frequently and in flight without downtime as opposed
to shipping patches or full releases and relying on
customers or field service technicians to install the
software.

• Customer support. The cloud vendor will be
responsible for all infrastructure, autoscaling,
patching/upgrading, security vulnerabilities, service
level agreements (SLAs), and more. Customer
support will expand beyond application support and
will now extend to 24-by-7-by-365 real-time support
of a highly reliable, scalable, and auditable platform.

• Regulatory. Cloud-based software is held to a much
higher standard than shipped software. Because
customers are giving up control of the infrastructure,
data, security, and the SLA, they shift a lot of

300

responsibility to the cloud vendor. Along with that
responsibility come regulatory requirements such as
SAS70, SSAE 16, HIPAA, SOX, PCI, and more.
Customers that are bound by these regulations will
require that their providers are compliant, as well.

• Monitoring. Running a real-time platform requires
rigorous monitoring, logging, and system-level
metrics collecting. The best platforms take a very
proactive approach and look for variances in their
data to head off problems before they become
catastrophic. For example, if a certain API is called
1,000 times a day on average but all of a sudden it is
called 5 times or 5,000 times, somebody should look
at the logs and see if something is starting to go
wrong. Organizations must be more proactive in their
monitoring in the elastic model.

• Availability. With shipped software it is up to the
customer to manage the infrastructure and perform
the appropriate capacity planning. With hosted
software the vendor must meet or beat published
SLAs. To do this the vendor must deliver extremely
high-quality software that can be updated seamlessly
without downtime. In addition, the software must
automatically scale up and down to handle traffic
peaks and be able to fail over automatically in the
event of a data center failure.

• Independence. With shipped software, customer
independence is easy. Each customer gets software
shipped to it and each customer is mutually exclusive
from any other customer. In a multitenant
environment this is much harder to achieve. Most
cloud vendors will want to use shared resources as
much as possible to keep costs down, but they may

301

also need to segregate certain components like data,
billing information, and performance so that clients
can’t access competitor information and to prevent a
performance hit in one client from impacting the
others.

Business Impacts
Cloud computing’s impacts go far beyond the walls of IT. It
is critical that the business impacts are understood, as well.
The following sections will discuss the impacts to the
accounting and finance, legal, sales, and human resources
departments.

Accounting and Finance

Cash flow is one of the most important pieces of financial
information that investors and shareholders look for in
financial statements. Cash flow is simply the difference
between how much money flows into the company (revenues)
and the amount of money that flows out (expenses). Cloud
computing changes both the sources of revenue and the
outgoing cash. In the enterprise operating model, packaged
software was purchased up front before the software was
installed and put to use. There was usually an annual
maintenance fee that ranged from 18 to 20 percent of the
initial purchase price. Sometimes there was also a
professional services charge for the installation of the
software, which might be a multiweek or multimonth effort.
From the seller’s perspective, sales were fairly predictable
because the pricing was a known entity and easy to forecast.

302

For buyers, a large up-front investment was required, which
negatively impacted cash flow. It would take time for the
revenues generated (if this even was a revenue-generating
tool) to cover the up-front capital expenditure.

In the elastic operating model, the cash flow story is much
different. Most cloud services are sold as a pay-as-you-go
model where buyers have no up-front costs and only pay for
the amount of services they use. Some cloud services charge a
monthly subscription fee, but there is still no large investment
to get started. As a buyer, the capital expenditure (CAPEX) is
removed from the equation, and the cost of the service is
categorized as an operating expense (OPEX). The buyer pays
for the cloud service at a rate that is proportional to the rate at
which it brings in revenue or value to the organization. For
example, a company leveraging Infrastructure as a Service
(IaaS) pays for the amount of compute capacity required to
launch its first customer. As the company starts to acquire
more customers, it ramps up its spending with its IaaS
provider in support of the increased incoming revenues. If
managed properly, the company scales its costs with its
revenues, and the costs are considered OPEX. This approach
frees up working capital to invest in other areas of the
business.

One challenge that the pay-as-you-go model presents is that
the predictability of revenues and costs is much more
dynamic than in the enterprise model. In the enterprise model,
a customer paid an initial cost, which was a one-time fixed
cost. Annual maintenance costs were very predictable. If the
customer needed to buy more, it went through a procurement
process, which was easily tracked. In the elastic model, the
seller has very little control over the amount the customer

303

spends because the customer is consuming services
on-demand as needed. One month a customer may use 25
percent more services than the next. Forecasting becomes
much less predictable as both the revenues and the operating
expenses fluctuate based on usage.

The product team should work closely with the finance team
to determine the optimal pricing structure that satisfies the
needs of both customer acquisition and corporate finance and
accounting.

Legal

Contracts for cloud-based software and services are much
more advanced than contracts for shipped software. These
new contracts have specific language around privacy, data
ownership, and numerous other regulations such as SSAE 16,
HIPAA, PCI, and more. The due diligence process for both
the buyer and seller of cloud-based software and services is
much more robust and time consuming than in traditional
enterprise software because the vendor is taking on more
responsibilities on behalf of the customer. Also, the laws and
regulations are changing as regulators are being pushed to
update their policies to accommodate the digital era. In my
experience, buyers of cloud services are much more
demanding and more rigorous in the vetting process,
especially around privacy, security, SLAs, and certifications.
The amount of time it takes to close a deal for a cloud-based
B2B service far exceeds what it took when I was making
noncloud-based software sales to enterprises.

304

The legal department should prepare for more requests and
more thorough evaluations of products and services. If this
group is not prepared for the increase in work, it could
become a bottleneck and slow down customer acquisition. In
extreme cases where the competition is fierce, a bottleneck in
legal could cause the deal to be lost. A best practice is to
produce a document that spells out all of the policies and
procedures pertaining to privacy, security, regulations, SLAs,
ownership, and so forth. Some companies create two
documents. The first is a high-level public document that does
not require a nondisclosure agreement to be signed and that
can be handed out to potential customers and even posted on
the company website. A second document is a more detailed
standard document that sums up all of the legal information
that would be in a contract. The quicker the seller can put the
customer at ease, the faster it can close the deal. Without
these documents there is a risk of endless requests for
information from customers.

Sales

Selling cloud-based software and services requires that
salespeople upgrade their technical skills. Salespeople must,
at a minimum, understand the basics of cloud computing and
be able to discuss things like privacy and SLAs at a high
level. For the next few years until cloud computing becomes
the norm for companies, salespeople will have to spend as
much time selling the value of cloud computing as they will
selling the value of their product.

Selling in the elastic model is very different from selling the
enterprise model. Obviously the pay-as-you-go pricing model

305

is very different from the large up-front acquisition model. In
many cases, buyers are not locked into long-term
commitments and simply pay by the month. The time it takes
to implement a solution is drastically reduced as well, in most
cases. In the past, there was usually a long procurement
process that included hardware, software, professional
services, and project plan for implementation. In the elastic
model, many services can be turned on instantly as soon as
the buyer agrees to the terms. Often the entire sales process
occurs with no intervention from the seller. Buyers can go to
the sellers’ websites and click a few buttons and start
consuming services. In such cases, the selling process is more
focused on advertising and raising awareness through social
media, conferences, e-mail campaigns, and many other media
outlets.

Just because cloud software can be turned on with the click of
a button and the registration of a credit card, does not mean
that enterprises will forgo the evaluation process. It really
depends on the service that is being provided. An IT team
looking for a collaboration tool may make that decision
without a robust evaluation and sign up quickly to start using
the tool. A company trying to decide between IaaS vendors
may perform a very thorough evaluation, including several
meetings with each provider with detailed discussions
concerning finance and legal.

Human Resources

Many companies do not have the required skill sets for cloud
computing, so human resources (HR) will be asked to find
cloud-ready employees. Not every city has a surplus of cloud

306

talent, which will require recruiters to look both nationally
and globally. Many cloud experts will not want to relocate, so
remote employment will be a key to acquiring talent. HR will
have to balance leveraging full-time employees with
consultants to get the right mix of talent required to take on
the challenges of cloud computing. There are a large number
of cloud consulting companies, but buyer beware. Just about
any company that was in the consulting business is now
magically a cloud consulting company. There is a good
chance that anyone who reads this book front to back knows
way more about cloud computing than the high-priced
consultants that claim to have expertise. Interview these
consulting firms as if they were applying for full-time
positions within your company. Don’t be fooled by the
marketing slides and fancy business cards. Cloud computing
is very new to enterprises and very few people or companies
have relevant experience yet.

For companies building cloud solutions, it is highly
recommended that they evaluate existing rewards and
recognition programs to see if they make sense for today’s
software development methods. In Chapter 14, we discussed
how important it is to break down the silos in IT. Throughout
this book it has been stressed how critical it is to build loosely
coupled services. HR and IT should brainstorm ways to foster
this desired behavior. If the current incentives do not
encourage people to make this change, then it is foolish to
think that things will magically change. Evaluate the existing
organizational structure and make sure it is optimized for
information sharing, learning, and silo busting. Create a
DevOps culture that prides itself on teamwork and
collaboration. Reward people for the new behavior and
discourage the old behavior.

307

Organization Change
Planning
In order to succeed as an organization, our fictitious
company, AEA, needs a change management plan to lead it
through this transformation. The CRM project is just the tip
of the iceberg for change. There is substantial change required
to deliver the future version of the auction site that will be a
Platform as a Service (PaaS) solution connecting third parties
to the auction engine.

The consequences of organizational resistance to change are
poor implementations, projects that take too long and cost too
much, and projects that don’t deliver expected results. In the
most extreme cases, the company does not embrace the
change and reverts back to its old ways. To combat these
undesirable results, change expert John Kotter recommends
an eight-step process to lead transformational change through
the organization:

1. Establish a sense of urgency.
2. Create a guiding coalition.
3. Develop a vision and strategy
4. Communicate the change vision.
5. Empower people to drive the vision.
6. Create short-term wins.
7. Consolidate gains and produce more change.
8. Anchor new approaches in the culture.

Let’s see how Acme eAuctions (AEA) used Kotter’s eight
steps to deal with the resistance from within the organization.

308

AEA Case Study: Organization Change Planning
In Chapter 3, we discussed the internal resistance of the AEA
SaaS CRM project. The development team that wrote the
legacy CRM system was resisting the decision to replace it
with a new, modern SaaS solution.
After several months of not making any progress on
implementing the new SaaS-based CRM application, AEA’s
CIO, Shirley Davidson, hired Fred Sanders, a long-time
expert on organizational change management. Fred worked
with Shirley to start a communication strategy for AEA. The
first step was to create a sense of urgency. They drafted a
message that talked about how the new system would
empower the sales force with mobile and social capabilities,
thus allowing the team to be more responsive and customer
friendly. The message also talked about the financial benefits
to the company, including reduced costs, opportunity costs of
redeploying internal resources to high-priority initiatives, and
less hardware and software to maintain, patch, and upgrade.
The third part of the message discussed the real-time and
analytical capabilities that would give the sales team a
competitive advantage by producing better lead generation,
more collaboration, and more personalization for customers.
The final piece of the message was to tie the delivery of this
initiative to the critical path for sales hitting their stretch goals
for the year-end. This would help the company reach its target
numbers, thus giving all employees a chance to receive their
full bonus at the end of the year.
Shirley and Fred then assembled a team (the guiding
coalition) that was responsible for the delivery of both the
project and the transformation. The team was made up of
people across the organization who were both influential and
respected. The team had a representative from finance, one

309

from human resources, a middle manager from the
infrastructure team, a director from application development,
and an architect. Each one of these people had a center of
influence within his or her area of expertise and could explain
the question “What’s in it for me?” (WIIFM) for each
employee. At the heart of all change is answering WIIFM for
each person affected. Once people know why they are being
asked to change, what that change means to them and the
organization, and why it is urgent, the odds of their
supporting the change increase dramatically.
Once the team was formed, it was tasked with taking the
urgency statement and creating a vision to be communicated
throughout the organization. The vision clearly articulated the
future state and the improvements to the overall effectiveness
of sales due to these changes. Once the vision was formed,
the team created a communication plan that included a town
hall meeting to discuss the urgency and the vision and answer
any questions. Each member held small team meetings with
various teams throughout the organization to discuss the
change in terms that were relevant to each team. For example,
the finance team meeting focused on the changes involved
from buying software licenses and hardware up-front to
paying for services on demand. The application development
team’s discussion focused on moving away from building
noncore-competency applications in favor of integrating SaaS
solutions. Each team meeting zeroed in on what was most
important for that group. Different members of the guiding
coalition blogged about the project and wrote articles in the
monthly newsletter. They communicated the vision often and
through multiple channels.
The team was empowered to make decisions, including
removing any obstacles in the way, whether those obstacles
were created by conflicting priorities or by resistance. Any

310

blockers that they could not resolve would be referred to
Shirley. In one instance, Shirley had to let go of an employee
because of the negative influence that the person was
creating. Once the communication plan kicked in, the project
took off again, and in one month the program to migrate the
data from the old system to the new SaaS-based system was
developed and tested. The cutover was scheduled for early
one Saturday morning. The data was imported into the
system. The users and testers accessed the data all weekend
and the team cut over on Monday morning. The feedback
from sales was tremendous, and the team was rewarded with
a catered lunch and gift cards to share with their families.
The next step was to use this project as a case study to
promote more change within the company. The people on the
team could now be evangelists for more SaaS-based solutions
going forward. Fred’s job here was done. He and Shirley had
created change and institutionalized that change as the new
way to do business. Without the investment in organizational
change management, AEA would likely not have completed
the migration to SaaS and would be continuing to pay for a
legacy system that was not meeting anybody’s needs.

Change in the Real World
I realize that the AEA change management example may
sound more like a fairy tale than a real-world solution. Many
years ago, I led a large service-oriented architecture initiative
that required drastic change throughout the organization. Not
only did it require IT to work across silos, it also required the
business to drastically change business processes. There was
a tremendous amount of resistance that was interfering with

311

progress. At the time, I was earning my MBA at night when I
discovered Kotter’s work in one of my classes. His ideas hit
home and I bought and read more of his books on change.
Feeling optimistic and energized, I returned to work and
started implementing Kotter’s eight steps. It was challenging
because we were already far down the road and resistance had
already been established. But we made progress, especially
where we could get the middle managers engaged. Some
folks were just never going to get on board and it wasn’t easy,
but had we not started implementing organizational change
management plans, the project might have failed. The lesson
learned is to implement this plan early and create a positive
vibe before resistance settles in.

Summary
Moving from an enterprise model to an elastic compute
model is an organization-wide effort that should not be
underestimated. Not only is it a shift in technology strategy,
but it is also a shift in strategy across all departments.
Management should analyze each department within the
company and identify the changes required to move the
organization into an elastic cloud-operating model.
Companies that recognize this and make the appropriate
changes throughout the organization will have a higher degree
of success than those companies that see it only as an IT
project.

References

312

Kotter, John P. (1996). Leading Change. Boston: Harvard
Business School Press.

Kotter, John P., and Dan S. Cohen (2002). The Heart of
Change: Real-Life Stories of How People Change Their
Organizations. Boston: Harvard Business School Press.

The Open Group (2013). “Building Return on Investment
from Cloud Computing: Discussion: Financial Value
Perspective of Moving from CAPEX to OPEX and
Pay-as-You-Go.” Retrieved from http://www.opengroup.org/
cloud/whitepapers/ccroi/disc1.htm.

Ross, S. A., R. W. Westerfield, and B. D. Jordan (2012).
Fundamentals of Corporate Finance. Boston: McGraw-Hill
Irwin.

313

Chapter 16

Final Thoughts
People in any organization are always attracted to the
obsolete—the things that should have worked but did not, the
things that once were productive and no longer are.

—Peter Drucker

Cloud computing will disrupt today’s businesses in countless
ways. Start-ups have been blazing the trail by embracing the
pay-as-you-go model and quickly bringing innovative
solutions to market at a fraction of the price that was possible
in the past. At the time this book was being written,
enterprises were reaching a tipping point where they were
finally overcoming their fears of the cloud and were starting
to make substantial investments to start moving workloads
into the cloud. Cloud computing is relatively immature, but it
is evolving rapidly. So much has changed in the time while I
was writing this book that I had to go back and update many
chapters after I completed the first version. The speed at
which change is happening is remarkable. We have entered a
golden era of innovation, and I truly believe that the cloud era
long term will have as big of an impact on society as the
industrial age did, if not bigger.

314

The Cloud Is Evolving
Rapidly
When I first started building software in the cloud back in
2008, Infrastructure as a Service (IaaS) was only being used
by start-ups and websites or for ad hoc tasks, but hardly any
enterprises were using it for anything substantial. Enterprises
were concerned about the lack of security and reliability in
the public cloud. The early adopters of the public cloud were
launching innovative businesses at record speeds and with
very little capital. As success stories started piling up over the
next few years enterprises kept evaluating but the cloud
solutions were not yet up to corporate standards. Then the
private cloud started becoming very appealing to enterprises.
They could now build their own clouds and take on the
responsibility of security, regulations, and availability.

As enterprises started down the private cloud path they started
to realize that it was a lot more work than they expected and
could be a complex undertaking, because of all of the existing
legacy applications that were not architected to run in the
cloud. They also realized that they were not getting all of the
benefits of cloud computing, such as rapid elasticity and
ubiquitous network access. As enterprises pushed forward
they started looking at hybrid clouds, which is where many
Fortune 1000 companies’ mind-sets were at the time this
book was being written.

The large enterprises are driving the innovation within the
cloud vendor community because the vendors know that the
best path to revenue is through the budgets of the big

315

enterprises. Private Platform as a Service (PaaS) has emerged
as a hot item, whereas two years ago it was not even on the
radar; after all, the purpose of PaaS was to not have to
manage any infrastructure or application stacks. What the
vendors soon learned is that as appealing as it sounds to not
have to manage any infrastructure, it is not an important
requirement for large enterprises. Most large enterprises want
the agility and “infrastructure as code” capabilities of the
cloud, but they still want to control their own destiny in
certain areas when it comes to storing data and managing
service level agreements (SLAs). What is becoming a
common practice today is large enterprises building hybrid
cloud architectures and then evaluating workloads on a
case-by-case basis to determine which workloads they can put
in the public cloud and which ones go in their private cloud.

Another area that has evolved rapidly is the rise of cloud
services that focus on a specific process or technological
hurdle. For example, there are Software as a Service (SaaS)
and PaaS solutions for almost every function within today’s
architectures. Here are some examples of services that solve a
particular IT problem.

• Security services
• Performance testing
• Continuous integration and delivery platforms (a.k.a.

DevOps)
• Web vulnerability scanning
• Database services
• Caching services
• Logging services
• Monitoring services
• Intrusion detection

316

• Mobile development platforms
• Big-data platforms
• Social media platforms

The list goes on and on. Almost any function that IT has to
address in today’s architectures is available as a service. What
that means is that building solutions in the cloud today can be
radically accelerated by integrating a collection of cloud
services as opposed to building everything from scratch. By
leveraging these cloud services, companies can focus more on
their core competencies and get their products and services to
market faster.

Another area that is evolving rapidly is the processes and
methodologies that companies are embracing to build cloud
services. We discussed the lean-thinking mentality of the
DevOps culture in Chapter 14. Companies are taking
advantage of the speed-to-market gains from being able to
provision infrastructure in minutes and are treating
infrastructure just like software. The speed at which
infrastructure can be provisioned has caused IT shops to
rethink their old methodologies. Many companies are starting
to emulate the success stories of companies like Etsy,
LinkedIn, Amazon, HubSpot, and others that deploy many
times a day. Vendors are quickly bringing tools to the
marketplace to assist in continuous integration, delivery, and
deployments. We are seeing agility like never before in the
history of computing. As more companies start embracing the
DevOps model, more CIOs are going to demand similar
results from their teams. It is going to be interesting to see
how this plays out over the next several years. My assumption
is that the IT shops that do not embrace this mentality will be
at risk of having their departments outsourced once deploying

317

daily becomes the new normal. This leads to the next section
called “Cloud Culture.”

Cloud Culture
Those of us who grew up before the 1990s, often joke about
how the younger generation does not know what an 8-track
player is, what a rotary phone looks like, what cars without
automatic windows and locks are like, or what life was like
without smartphones. Obviously, the younger generation sees
the world differently than the generations that came before
them. The same holds true for companies. There are many
companies that were born in the cloud era. These companies
don’t worry about a lot of the things that legacy companies
worry about. All they know is cloud. All they have ever
practiced is agile. They work from anywhere and anytime of
the day and only need connectivity and a browser to get work
done. Things that require drastic change for legacy companies
come naturally to these cloud cultures. This generation grew
up with mobile devices, social networks, freemium business
models, open source software, and self-service.

The cloud culture only knows a world that is cloudy. Since
this generation has never had to deal with mainframes, large
enterprise systems like SAP, locked-down corporate desktops,
seven layers of management, and all the glory of working in
large enterprises, they are able to think and innovate with
fewer constraints than those who came before them. The
result is that this generation and these new cloud-only
companies are where much of today’s innovation is coming
from. Large companies are taking notice and what we are

318

seeing is mergers and acquisitions becoming a key strategy
for large companies to acquire cloud computing talent.
Another reason why there are so many mergers and
acquisitions today is that business models are changing and
the old enterprise models are falling out of favor. Large
companies that survive on hardware and software sales are
finding out that their business models are outdated in this new
era. Mergers and acquisitions are a quick way to get back in
the game.

New Business Models
Today’s start-ups are able to take a hypothesis and test it in
the marketplace quickly without a huge up-front investment
by leveraging a combination of IaaS, PaaS, and SaaS
solutions. We have seen a few consumer-facing website
companies like Instagram and Tumblr go from a small
start-up to a billion-dollar company in just a few years.
Companies like these are outliers. It is rare that a company
has the success that these two web gems have had. What is
emerging is a different kind of business model, the
pay-as-you-go business-to-business model. Start-ups no
longer need to invent some incredibly unique idea to launch a
business anymore. What we are seeing in the marketplace
today is a lot of legacy software that is expensive,
cumbersome to use, and outdated. This creates great
opportunities for new companies to update the technology.

Much of today’s enterprise software is sold by large,
billion-dollar companies that have acquired solutions from
smaller companies and integrated them into one big software

319

package. The software is expensive and complex to install,
maintain, and use. There are licensing fees, upgrades, training
expenses, and other costs. To make matters worse, much of
the software we use today in our personal life is simple,
works on mobile devices and tablets, is integrated with social,
and requires no training. What I see emerging is that start-ups
are not inventing new things; they are taking a business
process that is being poorly serviced by today’s legacy
software or is not being serviced at all, and providing that
business process as a service using new technology.

The health-care industry is loaded with start-ups that are
automating archaic manual processes such as processing
claims, tracking equipment in hospitals, and reducing service
times. Workday is a SaaS solution for human resource
management. It is rapidly grabbing market share in large
enterprises. There is nothing new about the concept of human
resource management. What is new is the way Workday
delivers the service. This SaaS solution requires no hardware,
no maintenance, no resources to manage it, no licensing fees,
and no annual upgrades. But it is more than just delivering it
as SaaS that is the difference maker. By building this solution
from scratch, Workday was able to architect a highly scalable
solution that supports modern devices and tablets, leverages
big-data analytics, and has prebuilt connectors for integration
with other enterprise applications. Companies that embrace
cloud computing have a unique opportunity to take market
share away from traditional software companies by serving
customers better with more modern applications in a
pay-as-you-go model.

The big companies are not just going to sit there and lose
market share, however. They are buying these companies as

320

they start to gain traction in the marketplace. Just like in the
past, the big vendors will buy up these competitors and
integrate them into a one-size-fits-all enterprise offering. The
difference this time is that these new cloud-based applications
are built for integration. In the past, it was cumbersome
integrating different technology stacks with closed
architectures. Today’s cloud architectures are based on
RESTful (Representational State Transfer) services and were
designed to be loosely coupled. My prediction is that the big
vendors will initially lose some market share but will
eventually buy up the top-tier SaaS and PaaS solutions and
offer an impressive collection of pay-as-you-go services that
customers can configure to their liking. The cloud era
presents a huge opportunity for start-ups to enter the
marketplace and for large companies to acquire innovation. It
is going to be quite a ride the next few years.

PaaS Is the Game Changer
The one area that I think will have the biggest impact of them
all is PaaS. Often when people think of PaaS they think about
a development platform for .NET or LAMP stack developers,
but that is just the tip of the iceberg. Other PaaS solutions that
will make a huge impact are the ones that focus on mobile
and big data. Building mobile applications is a challenging
task. There are so many different smartphones and feature
phones as well as tablets, which require customizations in
order for the user interface to render correctly. Companies
often pay for developers to build one version for iOS, another
for Android, another for iPad, and so on. Mobile PaaS
companies are emerging that allow the designers and

321

developers to build one version and deploy to the devices of
choice. The PaaS takes care of dealing with the complexities
of multiple devices. These PaaS solutions create enormous
speed-to-market capabilities and allow developers to spend
their development time focusing on new features instead of
focusing on the underlying technology, which is constantly
changing.

With big data, we are now able to process enormous amounts
of data and produce actionable results faster than ever before.
Advances in this area are producing better knowledge about
customers, and real-time information about
Internet-connected devices like the health of a car or an
airplane engine, and making it easier to discover patterns in
data like never before. The challenge is that it is fairly
complicated to set up and manage the databases and
infrastructure required to tackle big-data problems. Big-data
PaaS solutions are emerging that take the rocket science out
of setting up and managing these complex environments. As
these PaaS solutions start to mature, any company will be
able to implement a big-data solution by leveraging a
pay-as-you-go cloud service as opposed to investing a lot of
time, money, and resources trying to figure it out by
themselves.

It is these PaaS solutions that automate specific, complex
problems that will make a huge difference in time-to-market
in the future. Companies will be able to leverage multiple
PaaS solutions to quickly build new products and services
with limited staff and limited budgets. PaaS is still early in the
maturity phase and is not widely adopted yet. In a few more
years, as it matures and more companies start to embrace it,
we will see new products and services come to market

322

quicker than ever before. Mark my words: PaaS will have the
biggest impact on productivity since the transition from
punchcards to Windows-based systems.

AEA Case Study: Final Architecture
Acme eAuctions (AEA) has completed its preliminary design
discussions in sprint 0. It has also completed a considerable
amount of research through reading books and blogs,
attending conferences, going to meetups, and watching
webinars. Out of the three key variables—time, money, and
resources—time is the most fixed at six months. Since time is
short, AEA has decided to leverage PaaS and SaaS as much
as possible. This decision shifts more responsibility to the
cloud service providers, thus freeing up IT to focus more on
core competencies.
Starting at the top of the business architecture diagram, AEA
has chosen to evaluate API management SaaS solutions.
These solutions will allow AEA to connect the API layer to
external partners much quicker, because the SaaS tools will
handle integrating with the various technology stacks and
communication protocols. These solutions will also provide
logging, monitoring, security, and analytics for all APIs.
AEA also decided to leverage a Mobile Backend as a Service
(mBaaS) solution to speed up the delivery of the user
interface across multiple devices. The developers will be able
to get to market much faster because they only need to create
a single user interface, and the mBaaS solution will take care
of transforming their design to the many devices in the
marketplace.
AEA also selected a PaaS solution to expedite the following
workflow processes: create content, list content, fulfill order,
process payment, and pay seller. It chose to build the auction

323

product process on IaaS because of the extreme processing
requirements. The auctions are transactional processes that
must meet high-performance requirements and have the
ability to scale up and down on demand, and require the most
control. Another determining factor is that the legacy system
has an auction engine that works in the on-premises
environment. It does not have the elasticity that the future
state architecture requires, but it does work well under current
loads. The team felt that to meet the six-month deliverable to
connect partners to the platform, it would hold the auction
engine rewrite out of scope for now. Instead the developers
will implement a hybrid cloud solution that leverages a public
PaaS to drive most of the workflow but leverage the existing
auction engine in the existing data center.
The back-end systems are all roadmap items for future SaaS
replacements, given that none of them are a core competency.
The only exception is the CRM migration to SaaS, which was
already completed.
The AEA infrastructure team selected a logging and
monitoring tool that is both supported by the public PaaS and
can be run in a data center or on any PaaS. This approach
allows for centralizing logging and monitoring functionality.
All personally identifiable information (PII) is designed to
reside in an encrypted database table hanging off the
customer table. All data travels over HTTPS and the PII data
is also stored encrypted. No other data is stored encrypted so
that the performance won’t be impacted.
Many of the buyer and seller services leveraged third-party
services. For example, AEA chose not to write its own My
Cart and Payments modules in the buyer services or the
Advertise module in the seller services.
The disaster recovery plan for the PaaS solution is to get
regular backups of data from the cloud database. The

324

recovery time objective (RTO) and the recovery point
objective (RPO) for the services deployed in the PaaS are
higher than the RTO and RPO of the auction engine. Since
the auction engine is still on-premises, the existing disaster
recovery plan for it still applies. Down the road, when AEA
rewrites the auction engine, it will build an active-active hot
solution to maximize uptime.

AEA was able to lay out its plan and a roadmap for the
remaining components because it took some time up front and
applied a pragmatic approach. Now that it has a clear
direction and strategy it can start sprinting. Had the company
started sprinting right away, it would have been difficult to
put a cohesive strategy together and it would have risked
making the wrong cloud service model and deployment
model decisions, which it would pay for dearly for years to
come.

Summary
Cloud computing has reached a tipping point where it has
passed the hype phase and has entered a phase where
enterprises are starting to embrace the fact that the cloud is
real and here to stay. Like any other new idea or technology,
there are no silver bullets. The companies that will have
success in the cloud are the ones that understand the
differences between the cloud service and deployment models
and make the right choices based on the business
requirements of their company. They must understand the
technical requirements for building cloud services and
implement an architecture that addresses each requirement.
These companies must also deal with organizational change

325

and manage against resistance, skill-set gaps, new processes,
and more. As with any other transformation that we have
dealt with over the years, it all comes down to people,
process, and the technology.

In today’s environment, companies can quickly leverage a
combination of many different cloud services to get new
innovative products to market faster and cheaper than ever
before. Now that enterprises and governments are investing
heavily in cloud technologies, hybrid models are becoming
more mature. With the increase of trust in hybrid models,
cloud adoption is quickly rising and the barriers to entry are
lowering. Procuring and managing infrastructure is becoming
less of a bottleneck now that provisioning infrastructure can
be done through code. And given that infrastructure can be
treated as code, practitioners are looking at new ways of
building and managing software to increase agility. The
DevOps movement is an important cultural shift that has
emerged. Companies that have embraced and perfected lean
thinking are able to build highly reliable systems that can
react to business needs much faster than ever before. Some
companies actually deploy multiple times a day.

All of this is leading to new business models and the
opportunity for any company to embrace emerging
technologies like mobile, big data, social media marketing,
and others without being required to be experts at the
underlying technologies. The rate of change is accelerating
faster than ever before and we are on the verge of an
unprecedented technology revolution. The companies that
embrace cloud computing and are pragmatic about their
approach to building cloud services will be a big part of this
change. The companies that resist cloud computing or rush to

326

build solutions without an understanding of what is required
to properly architect cloud services will likely not be around
when the dust settles from all of this change.

Companies should accept the fact that cloud computing is
here to stay. When building solutions in the cloud expect
constant change. We are still early in this evolving space.
Today, hybrid clouds are popular. A few years from now I
suspect that companies will gradually give up more control in
favor of moving more workloads to the public cloud as the
public cloud vendors continue to add more features focused
on winning more enterprise and government business. The
role of IT will shift toward integrating APIs and
industry-specific clouds and away from building large
amounts of code internally.

At the end of the day, it all comes down to architecture.
Understand the business requirements first and foremost. Map
the right cloud service models and deployment models to the
business needs. Build what is core to the business and
leverage PaaS and SaaS solutions for everything else. Make
sure the architecture addresses the different strategies in this
book: auditing, data, security, logging, SLAs, monitoring,
disaster recovery, DevOps, and organizational impacts. And
finally, have fun and enjoy the ride!

327

INDEX

Accounting and finance, impact of elastic cloud model on

ACID transactions

Acme eAuctions (AEA) case study

business architecture
business problem statement
cloud deployment models
cloud service models
data design decisions
dealing with change
disaster recovery planning
final architecture
IaaS use case
logging strategy
mobile development decision
monitoring strategy
organization change planning
PaaS use case
pragmatic approach
SaaS use case
security requirements
service level agreements

Active-passive cold model

Active-passive warm model

AEA case study. See Acme eAuctions (AEA) case study

328

Agility of cloud computing

Allspaw, John

Amazon EC2

Amazon Elastic Block Store

Amazon Web Services (AWS)

availability zones
compliance road map
Global Start-Up Challenge
as IaaS
infrastructure management and
Netflix and
outages
security of
service level agreement

Apigee

API management

API SaaS tools

Application layer

KPIs and
performance at
security and

Applications

329

cloud, auditing
cost of building in cloud
legacy, porting to cloud
migrating to cloud
mobile, and PaaS
web, security of

Application stack layer

Architecture

business architecture diagram
defining
enterprise, value of
loosely coupled
tightly coupled

Archiving use cases

Auditing

cloud applications
design strategies for
regulations and
security and

Automating

deployments
infrastructure

Automation strategy for security

AWS. See Amazon Web Services

330

Backup and restore method, classic

BASE transactions

Bias, Randy

Big-data PaaS solutions

Business and technical requirements. See Customer
requirements

Business architecture diagram

Business impact of elastic cloud model

Business models

Case studies

Instagram
National Oceanic and Atmospheric Administration
Netflix
Obama campaign e-commerce site
See also Acme eAuctions (AEA) case study

Cash flow

Categories of information, monitoring

CD (continuous delivery)

CDNs (content delivery networks)

Centralization strategy for security

331

Centralized logging strategy

Change, resistance to. See also Organizational change

Chatter

CI (continuous integration)

Client-server era

Cloud bursting

Cloud computing

agility of
benefits of
characteristics of
evolution of
maturation of
overview of
security maturation
use cases
visual model of
See also Case studies; Designing cloud services; Hybrid
clouds; Private clouds; Public clouds; Worst practices

Cloud culture

Cloud Security Alliance

IaaS definition
PaaS definition

Cloud service providers (CSPs). See also Vendors

332

Cloud stack

choosing service model and
IaaS
monitoring and
overview of
PaaS
SaaS

Coghead

Column store databases

Commodity clouds

Compliance, monitoring

Concur expense management software

Consumer, maturity of, and auditing strategy

Consumer experience, visualizing

Content delivery networks (CDNs)

Continuous delivery (CD)

Continuous integration (CI)

Costs

of downtime
expectations for reductions in
of IaaS

333

managing SLAs
of ownership
of prototyping
unexpected

Criticality of services

cost of downtime and
SLAs and

CSPs (cloud service providers). See also Vendors

Customer requirements/expectations

identifying
misunderstanding
for security
SLAs and
why, who, what, where, when, and how of

Data

characteristics of
encryption of
government requests for
store types for
tenancy of system and characteristics of
See also Security

Database as a Service (DBaaS) products

Data mining and analytics use cases

Defining SLAs

334

Delayed time performance

Deployment models

AEA case study
overview of
PaaS
selecting

Deployments

automating
daily

Designing cloud services

business architecture diagram
consumer experience
data requirements
for failure
pragmatic approach
problem statement
project constraints
state constraints
user characteristics
See also Customer requirements

Detection area of focus

DevOps

automating deployments
automating infrastructure
continuous integration and continuous delivery

335

designing feature flags
developing mind-set
measuring, monitoring, and experimenting
overview of

Directing logs to isolated storage areas

Disaster recovery planning

cost of downtime
hybrid clouds and
for IaaS
overview of
for PaaS
for primary data center
for SaaS

Document store databases

Domains to monitor

Downtime, cost of

Dynamic data sets

Elastic cloud model

Encryption of data

Engine Yard

Enterprise architecture, value of

Enterprise clouds

336

Enterprise management, complexity of

Enterprise model

Eucalyptus

Expectations, misguided

Experimenting and DevOps

Failure

designing for
planning for
prevention of
See also Disaster recovery planning; Outages

Fault tolerance with software

Feature flags

Fielding, Roy

Files, storing data as

Financial aspects of service models

Force.com

Fragile systems

Functional requirements

GitHub

337

GoGrid

Google

Apps Engine
Gmail
as PaaS solution

Government requests for data

Graph databases

Hammond, Paul

HATEOAS

Heroku

HIPAA (Health Insurance Portability and Accountability Act)

Horizontal scaling

Hosting solutions

Human resources, impact of elastic cloud model on

Hybrid clouds

disaster recovery planning with
overview of

IaaS. See Infrastructure as a Service

Implementing cloud initiatives

338

Infrastructure

automating
provisioning

Infrastructure as a Service (IaaS)

auditing cloud applications
cloud stack
costs of
described
disaster recovery planning for
logging strategies
monitoring
overview of
regulations for
selecting

Infrastructure layer, performance at

Innovation, resistance to

Instagram

Internet

business operating model with
level of complexity of systems and

Inventory of actors and SLAs

IT, impact of elastic cloud model on

Key management and security

339

Key performance indicators (KPIs), monitoring

Key-value store databases

Kim, Gene

Kotter, John

Layer 7 Technologies

Legacy applications, porting to cloud

Legacy systems, migrating to cloud

Legal department, impact of elastic cloud model on

Location of data

Log files, uses of

Logging

centralized strategy for
security and

Loosely coupled architecture

Machine images, standard set of

Mainframe computers

Managing vendor SLAs

Mashery

340

Maturity of product and security

M-Dot Network

Mergers and acquisitions

Metrics to monitor

Microsoft Azure

Migrating

applications to cloud
legacy systems to cloud

Minimal viable product

Mobile applications and PaaS

Monitoring

DevOps and
overview of
proactive compared to reactive
requirements for
security and
strategies by category
strategies by service level

Multitenancy design strategies

National Institute of Standards and Technology (NIST)

IaaS definition

341

PaaS definition
public cloud definition
SaaS definition
visual model of cloud computing

National Oceanic and Atmospheric Administration

Near real time performance

Netflix

NIST. See National Institute of Standards and Technology

Nonfunctional requirements

NoSQL databases

Obama campaign e-commerce site

On-demand software solutions. See Software as a Service

Open-source cloud-based solutions

OpenStack

Organizational aspects of service models

business impact
choosing model and
enterprise compared to elastic cloud models
IT impact
overview of

Organizational change

342

management of
planning
in real world
underestimating impacts of

Outages. See also Disaster recovery planning

Ownership of data

PaaS. See Platform as a Service

Passwords, API keys compared to

Patch management and security

Pay-as-you-go pricing model

PCs

PDP strategy

Performance, monitoring

Performance requirements of data

Personally identifiable information (PII)

encryption of
security of
SLAs and

Physical characteristics of data

Platform as a Service (PaaS)

343

auditing cloud applications
cloud stack
costs of
described
disaster recovery planning for
as game changer
logging strategies
monitoring and
overview of
regulations for
security of
selecting
SLAs of
See also Microsoft Azure

Policy enforcement and security

Pragmatic approach for building services

Prevention area of focus

Primary data center, disaster recovery planning for

active-active hot
active-passive cold
active-passive warm
classic backup and restore method
overview of

Private clouds

Private keys

Private PaaS

344

Private PaaS service providers

Proactive monitoring

Problem statement

Product components and SLAs

Production environment and quality monitoring

Project constraints

Protection area of focus

Prototyping, comparison of costs of

Public clouds

Public keys

Public PaaS service providers

Python

Quality, monitoring

Rackspace

Reactive monitoring

Real-time performance

Recovery point objective

345

Recovery time objective

Redundancy, cross-region and cross-zone

Regulations

auditing and
compliance with, and SLAs
data design decisions and
list of
monitoring compliance with
USA Patriot Act
U.S.-EU Safe Harbor

Requirements. See Customer requirements/expectations

Resistance to change

RESTful (Representational State Transfer) services

Retention period for data

RFC 5424 Syslog protocol

Risk aspects of service models

Risk tolerance and security

SaaS. See Software as a Service

Sales, impact of elastic cloud model on

Salesforce.com

346

Scaling techniques

Security

areas of focus
of AWS
cloud service providers and
maturation of
misinformation about
monitoring
overview of
requirements for
service models and
skills shortage and
strategies for
truth about
of web

Security as a Service (SecaaS)

Self-service provisioning

Sensitivity of data and security

Service level agreement (SLA)

defining
factors impacting
managing
monitoring
overview of

Service levels, monitoring

347

Service models

overview of
security requirements for
selecting
See also Infrastructure as a Service; Platform as a Service;
Software as a Service

Session hijacking

Single tenancy

Skills shortage

SLA. See Service level agreement

Snowden, Edward

Software as a Service (SaaS)

auditing cloud applications
cloud stack
costs of
described
disaster recovery planning for
logging strategies
monitoring and
overview of
regulations for
security of
selecting
SLAs and

Software escrow

348

Standardization strategy for security

Standardizing log formats

State constraints

Stateful services

Stateless services

Static data sets

Storage use cases

Store types for data

Strategic aspects of service models

Systems thinking. See also DevOps

Target industry and security

Technical aspects of service models

Tenancy of systems

Test environment use cases

Third-party software solutions and PaaS

Throttling

Throughput, monitoring

349

Tightly coupled architecture

Transaction boundaries

Transmission boundaries and security

Tumblr

USA Patriot Act of 2001

User characteristics

User layer

performance at
security and

U.S.-EU Safe Harbor regulations

Value of recovery, and cost of downtime

Vendors

cloud migration services of
leveraging multiple public
lock-in
managing SLAs
PaaS
SaaS
security requirements for
selecting
shutdown of
See also Cloud service providers; Outages

350

Vertical scaling

Volatility of data

Volume of data

Web security

Workday

Worst practices

migrating applications to cloud
misguided expectations
misunderstanding customer requirements
outages and out of business scenarios
overview of
security misinformation
selecting vendors
skills shortage
underestimating impacts of change
unexpected costs

351

Uploaded by [StormRG]

	Cover
	Contents
	Title
	Copyright
	Dedication
	Foreword
	Preface
	Acknowledgments
	About the Author
	Chapter 1: Why Cloud, Why Now?
	Evolution of Cloud Computing
	Enter the Cloud
	Start-Up Case Study: Instagram, from Zero to a Billion Overnight
	Established Company Case Study: Netflix, Shifting from On-Premises to the Cloud
	Government Case Study: NOAA, E-mail, and Collaboration in the Cloud
	Not-for-Profit Case Study: Obama Campaign, Six-Month Shelf-Life with One Big Peak
	Summary

	Chapter 2: Cloud Service Models
	Infrastructure as a Service
	Platform as a Service
	Software as a Service
	Deployment Models
	Summary

	Chapter 3: Cloud Computing Worst Practices
	Avoiding Failure When Moving to the Cloud
	Migrating Applications to the Cloud
	Misguided Expectations
	Misinformed about Cloud Security
	Selecting a Favorite Vendor, Not an Appropriate Vendor
	Outages and Out-of-Business Scenarios
	Underestimating the Impacts of Organizational Change
	Skills Shortage
	Misunderstanding Customer Requirements
	Unexpected Costs
	Summary

	Chapter 4: It Starts with Architecture
	The Importance of Why, Who, What, Where, When, and How
	Start with the Business Architecture
	Identify the Problem Statement (Why)
	Evaluate User Characteristics (Who)
	Identify Business and Technical Requirements (What)
	Visualize the Service Consumer Experience (Where)
	Identify the Project Constraints (When and with What)
	Understand Current State Constraints (How)
	Summary

	Chapter 5: Choosing the Right Cloud Service Model
	Considerations When Choosing a Cloud Service Model
	When to Use SaaS
	When to Use PaaS
	When to Use IaaS
	Common Cloud Use Cases
	Summary

	Chapter 6: The Key to the Cloud
	Why REST?
	The Challenges of Migrating Legacy Systems to the Cloud
	Summary

	Chapter 7: Auditing in the Cloud
	Data and Cloud Security
	Auditing Cloud Applications
	Regulations in the Cloud
	Audit Design Strategies
	Summary

	Chapter 8: Data Considerations in the Cloud
	Data Characteristics
	Multitenant or Single Tenant
	Choosing Data Store Types
	Summary

	Chapter 9: Security Design in the Cloud
	The Truth about Data in the Cloud
	How Much Security Is Required
	Responsibilities for Each Cloud Service Model
	Security Strategies
	Areas of Focus
	Summary

	Chapter 10: Creating a Centralized Logging Strategy
	Log File Uses
	Logging Requirements
	Summary

	Chapter 11: SLA Management
	Factors That Impact SLAs
	Defining SLAs
	Managing Vendor SLAs
	Summary

	Chapter 12: Monitoring Strategies
	Proactive vs. Reactive Monitoring
	What Needs to Be Monitored?
	Monitoring Strategies by Category
	Monitoring by Cloud Service Level
	Summary

	Chapter 13: Disaster Recovery Planning
	What Is the Cost of Downtime?
	Disaster Recovery Strategies for IaaS
	Recovering from a Disaster in the Primary Data Center
	Disaster Recovery Strategies for PaaS
	Disaster Recovery Strategies for SaaS
	Disaster Recovery Hybrid Clouds
	Summary

	Chapter 14: Leveraging a DevOps Culture to Deliver Software Faster and More Reliably
	Developing the DevOps Mind-Set
	Automate Infrastructure
	Automate Deployments
	Design Feature Flags
	Measure, Monitor, and Experiment
	Continuous Integration and Continuous Delivery
	Summary

	Chapter 15: Assessing the Organizational Impact of the Cloud Model
	Enterprise Model vs. Elastic Cloud Model
	IT Impact
	Business Impacts
	Organization Change Planning
	Change in the Real World
	Summary

	Chapter 16: Final Thoughts
	The Cloud Is Evolving Rapidly
	Cloud Culture
	New Business Models
	PaaS Is the Game Changer
	Summary

	Index

